The information contained herein is proprietary to Monitor Products, Inc. shall not be disclosed, duplicated, nor otherwise copied in whole or part for any other purpose without express written permission of the Legal Department of Monitor Products, Inc. This data is issued to authorized Monitor Servicing Personnel for guidance in the installation and maintenance of the subject product and is intended for use by authorized Monitor service personnel only. Further, Monitor Products, Inc. reserves the right to make improvements and corrections and to alter specifications of products described herein, at any time without prior notice.
MONITOR HEATING SYSTEMS
Table of Contents

Section 1: Description .. Page 1 ~ 7

Section 2: Installation ... Page 9 ~ 20
2-1 Introduction; 2-2 Physical Placement of Heater; 2-3 Drilling Requirements; 2-4 Power Requirements; 2-5 Fuel Tank Requirements; 2-6 Temperature Sensor Wiring Requirements; 2-7 Building Codes; 2-8 Un-packaging; 2-9 Installation of Flue Pipe Window Kit; 2-10 Installing an Extension Kit; 2-11 Typical Monitor Lifter Pump Installations; 2-12 Uses for the Elbow Adapter Kit; 2-13 Fuel Tank Installation; 2-14 Heater Installation

Section 3: Operation .. Page 21 ~ 30
3-1 Introduction; 3-2 Operating Specifications; 3-3 Operating Controls and Indicators; 3-4 Pre-operation Check List; 3-5 Operation; 3-6 Manual Heater Operation; 3-7 Automatic Heater Operation; 3-8 Reprogramming the Monitor Heater; 3-9 Heat Sensor; 3-10 Monitor Shutdown; 3-11 Out of Fuel; 3-12 Recovery from a Power Failure; 3-13 Recovery from Overheat Condition; 3-14 Recovery from Blown Fuse

Section 4: Maintenance ... Page 31 ~ 35
4-1 Introduction; 4-2 Periodic Maintenance; 4-3 Inspect Exhaust/Air Lines; 4-4 Verify Igniter Operation; 4-5 Clean Fuel Constant Level Valve Filter; 4-6 Cleaning Fusible Link Valve Intake Fitting on M-21; 4-7 Corrective Maintenance; 4-8 Replacement of Fuses; 4-9 Fuel Contamination
MONITOR HEATING SYSTEMS
Table of Contents

Section 5: Servicing .. Page 37–38
- 5-1 Introduction
- 5-2 Measurement of Fuel Flow rate
- 5-3 Removal of Water Deposits and Contaminants from Fuel Constant Level Valve and Fuel Lines
- 5-4 Cleaning the Burn Chamber
- 5-5 Cleaning the Fuel Inlet

Section 6: Troubleshooting ... Page 39–51
- Resistance Values
- Component Voltage Readings
- Test Point Voltage
- Troubleshooting Diagrams (Mechanical)
- Troubleshooting Diagrams (Electrical)

Section 7: Electrical System ... Page 52–54
- Monitor 40 Printed Circuit Board Wiring Diagram
- Monitor 21 Printed Circuit Board Wiring Diagram
- Schematic
1-1 INTRODUCTION
The Monitor Heating System represents "state of the art" technology and, although the heater is sophisticated, it is simple to operate, takes little time to maintain and requires minimum servicing.

The Monitor is a totally integrated heater consisting of a housing (cabinet), a combustion system, an air circulation system, a fuel delivery system and micro-computer system.

Redundant safety devices are included in the heater's design to protect the user from injury and the heater from damage.

This section describes the heaters and their components.

Since a number of components have multiple functions, a component may be described more than once.

1-2 PHYSICAL SPECIFICATIONS
Listed below, are the physical specifications that apply to the Monitors:

Monitor 40:
- Height: 26.6" (67.5cm)
- Width: 28.7" (73cm)
- Depth: 13.8" (35cm)
- Weight: 82 lbs (37kg)
- Flue Pipe Hole: 2 1/2" (65mm) diameter

Monitor 21:
- Height: 25.6" (65cm)
- Width: 20.9" (53cm)
- Depth: 12.4" (31.5cm)
- Weight: 55 lbs (25kg)
- Flue Pipe Hole: 2 1/4" (65mm) diameter

1-3 FUNCTIONAL DESCRIPTION
An overview of the functional operation of the Monitors is diagrammed by Figure 1-1 and is described as follows:

Monitor operation always begins with a pre-purge and a pre-heat, which must be completed before operation can begin to avoid unnecessary

by visually examining a series of indicators on the Control Panel.

A Temperature Selector Control permits the user to set the temperature to the level desired in the room.

Upon commencing heater shutdown, a post-purge is run.

All heating operations cease except for the air circulation fan and the combustion fan which continue. The post-purge continues for three minutes after a flame goes out. At this point, heater operation stops completely.

Automatic operation of the Monitor 40 and Monitor 21 is controlled by a microprocessor with four sets of Time/Temperature programming per day.
MONITOR HEATING SYSTEMS
Section 1: Description

mechanisms.

1-5 SPILL TRAY
The Spill Tray:
— Protects the floor from damage resulting from fuel spillage.
— Provides a secure, tip-resistant heater base.
Metal retainers (2) secure the heater to the Spill Tray.
The legs are positioned within the circular indentations.

1-6 HEATER CABINET
A steel Cabinet holds and protects all internal components.
A number of primary parts are assembled to form this housing.

1-7 COMBUSTION SYSTEM
The Combustion System is responsible for the production of heat which is circulated into the room.
In the Combustion Systems a mixture of fuel and air is burned to produce heat. Air is drawn from outside the dwelling to Combustion Chamber. At the same time, fuel is metered from a storage tank into the same Combustion Chamber. Within the chamber, the air/fuel mixture is ignited to produce heat.
The Monitor combustion systems are safeguarded by a pair of overheat protector switches; They will shut down the heater (to protect it from damage) in the event of excessive heat build-up. The overheat protector switches reset automatically after cooling down.

1-8 COMBUSTION CHAMBER
This tall cylinder is positioned on the Heater Base. It is secured to the base by phillips head screws.
Connected to the Combustion Chamber are the igniter, (located within the chamber) a fuel line, the Heat Exchanger, and a Flame Sensor.
Within the Combustion Chamber are the Burner Pot, the Combustion Ring Assembly and the Burner Cap. Access to those internally-located parts is facilitated by a removable Service panel. A window on the panel lets the technician visually examine the combustion process (i.e. glowing igniter or proper flame color).
An airway, in the Cabinet Base, extends from the intake fan of the Combustion Blower to the hollow base of the Combustion Chamber. This airway channels air to the Combustion Chamber.
The Flame Sensor is mounted with two (2) phillips head screws onto the wall of the Combustion Chamber.

1-9 BURNER POT
Designed specifically to support combustion, the Burner Pot (refer to Figure 1-2) contains a series of air holes, an igniter tube (to accommodate the igniter), and a fuel inlet fitting (interconnects the fuel line). It is secured to a mounting plate near the bottom of the Combustion Chamber.
The Combustion Ring Assembly is seated on three (3) screws in the Burner Pot.

1-10 COMBUSTION RING ASSEMBLY
This assembly is a special structure, designed to promote efficient combustion.

1-11 BURNER CAP
Secured by tabs and a screw on the Burner Pot, the Burner Cap "shapes" the flame into its configuration and height.

1-12 FLAME SENSOR
Mounted on the outside wall of Combustion Chamber, the Flame Sensor always supervises the flame.

1-13 IGNITER
Located within the igniter tube of the Burner Pot, the Igniter is designed to pre-heat the Burner Pot and to vaporize and ignite the air/fuel mixture to start the combustion process.
The Igniter is secured by a bracket and screw to the igniter tube. The cover plate is secured to the combustion chamber by three (3) phillips head screws.

1-14 COMBUSTION AIR SYSTEM
The Combustion Air System channels air to and from the heater.
Outside air is drawn into the heater by the Combustion Blower through an airway to the Combustion Chamber.
A Combustion Blower draws the intake air into the through a Flue Pipe. This air enters the Combustion Chamber at the Burner Pot and mixes with the fuel support combustion, Remaining air is heated and is drawn into the Heat Exchanger.
As the heated air passes through the Heat Exchanger, an Air Circulation Fan blows room air past the Heat Exchanger and out again into the room, heating passing air by convection. Exhaust vapors exiting from the Heat Exchanger are vented through the Flue Pipe.
A deterioration of air pressure at the Air Pressure Switch is an abnormal condition; the heater is shut down by the malfunction.
MONITOR HEATING SYSTEMS

Section 1: Description

1-15 FLUE PIPE
Flue Pipes are available in three (3) sizes. This provides the flexibility to meet the installation requirements for dwelling of various wall thicknesses.

One side of the Flue Pipe contains a "T"-shaped fitting consisting of four ports. This side is mounted on the interior wall of the dwelling. The pipe side of the Flue Pipe is vented outside the dwelling.

The Flue Pipe Assembly consists of two concentric tubes. Outside air is drawn through the cylindrical space between the tubes. Combustion by-products are vented through the inner tube.

As the cool air enters, it is heated by the hot air that is exiting the system.

A large-bore, flexible hose connects the air inlet port on the Flue Pipe with the Combustion Blower; a cloth-covered metal pipe connects the Combustion Blower with the exhaust outlet on the Flue Pipe.

IMPORTANT: If extension kits are utilized, use the correct damper as follows:

<table>
<thead>
<tr>
<th>Extension kit</th>
<th>M-40</th>
<th>M-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 3 elbows</td>
<td>"S" damper</td>
<td>"S" damper</td>
</tr>
<tr>
<td>Extra Short Extension Kit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length: 11'/2" - 7'/4"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up to 3 elbows with</td>
<td>"S" damper</td>
<td>"S" damper</td>
</tr>
<tr>
<td>Short Extension Kit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length: 11'/2" - 20'/4"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up to 3 elbows with</td>
<td>"E" damper</td>
<td>unused</td>
</tr>
<tr>
<td>Medium Extension Kit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length: 20'/4" - 38"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up to 3 elbows with</td>
<td>"E" damper</td>
<td>unused</td>
</tr>
<tr>
<td>Long Extension Kit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length: 38" - 73"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1-16 COMBUSTION BLOWER
The combustion blower on the Monitor 21 is a dual function fan.

The intake fan draws in outside air thru the flue pipe for internal combustion. The cooling fan which runs on a common shaft with the intake fan circulates air inside the heater cabinet to keep internal components cool.

The Monitor 40 combustion blower has a two stage intake fan.

Burner modes control fan speeds and the solenoid damper in the blower casing. Those functions are as follows:

<table>
<thead>
<tr>
<th>Burn Mode</th>
<th>Fan Speed</th>
<th>Solenoide Damper</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>High</td>
<td>Off (Open)</td>
</tr>
<tr>
<td>Medium-High</td>
<td>High</td>
<td>Off (Open)</td>
</tr>
<tr>
<td>Medium-Low</td>
<td>Low</td>
<td>On (Close)</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
<td>On (Close)</td>
</tr>
</tbody>
</table>

1-17 HEAT EXCHANGER
An inlet at top of the Heat Exchanger permits the heated air to travel from the Combustion Chamber into the exchanger.

An outlet, at the bottom of the exchanger, permits combustion by-products to be vented to the Flue Pipe.

While moving through the Heat Exchanger, the hot air within the exchanger heats the outside metal walls. The hot metal walls, in turn, heat air that is pushed past the exchanger and is circulated into the room. An air baffle, directly in front of the exchanger, deflects the heated air upwards, and out, through the louver assembly.

A pair of Over-Heat Protector Switches protect the heater from damage due to excessive heat built-up.

1-18 AIR CIRCULATION FAN
Both Monitor circulation fans are driven by two-speed motors and are designed to circulate the heated room air.

If the heater is running in low and medium-low burn modes, the fan also runs at low-speed; in medium-high or high burn modes, the fan advances to high-speed.

Operation of the fan is controlled by the microprocessor and fan thermostar switch (52°C/126°F...on, 35°C/95°F...Off)

Physically assembled with a protective wire cage for the Monitor 40 and metal mesh cage for Monitor 21, the entire fan assembly is secured to a bracket on the rear of the Heater Cabinet.

A metal conduit, at the rear of the heater, protects the fan wiring from damage.

1-19 AIR PRESSURE SWITCH
This switch consists of a rubber diaphragm which senses changes in air pressure(it is connected to the Combustion Blower) and normally-open, micro switch.

Should an abnormal pressure differential exist, the switch opens to disable the circuitry that controls...
the supply of fuel. Since the flow of fuel to the Burner Pot is cut off, the flame extinguishes (after all fuel currently in the line has been consumed), and the Burner Status Indicators blink.

This safety mechanism can be triggered by several conditions:
- Leak or loose connection in air line
- Leak, loose, or broken tubing which connects the Air Pressure Switch with the Combustion Blower
- Clogged or blocked Air Line
- Blocked or clogged Flue Pipe
- Intake port of Combustion Blower is blocked.
- Combustion Blower is in operable

1-20 FUEL DELIVERY SYSTEM
Fuel Delivery is a very important aspect of the Monitor's operation.

The fuel flow must be maintained at a level corresponding to the burn mode, so that combustion can be conducted efficiently.

Fuel moves by gravity-flow from the external fuel storage tank or the capsule fuel tank to the Fuel Constant Level Valve.

The Solenoid Pump meters the flow of fuel from the Fuel Constant Level Valve to the Burner Pot.

The metered flow of fuel is carried to the Burner Pot by a copper fuel line.

1-21 EXTERNAL FUEL TANK
The Monitor 21 gives the user the option of either using the internal capsule tank or hooking up to an external fuel tank.

Fuel for the Monitors can be stored in, and fed from an external storage tank. The tank, which generally is dealer installed, should contain a shutoff valve, a fuel filter and a vent. Installation of the tank should conform to local regulations and to the specifications and guidelines documented in this Service Manual.

1-22 FUSIBLE LINK VALVE
Basically, the Fusible Link Valve is a safety mechanism that cuts off fuel to the heater in the event of an overheat condition at the valve.

The fusible link valve is mounted as a standard item on the Monitor 21. Located outside the rear of the Heater Cabinet, the Fusible Link Valve is a spring-loaded device that cuts off the supply of fuel to the heater when the temperature level (at the valve) exceeds a predefined maximum limit.

An inlet on the bottom of the valve allows fuel to pass into the heater. The handle—which can also manually be opened or closed—sits on a spring-loaded stem which contains a low-melting point alloy.

The fusible link valve can be externally mounted on the Monitor 40 if required.

1-23 FUEL CONSTANT LEVEL VALVE
This valve has an automatic shutoff safety mechanism and a Fuel Set Lever. The safety mechanism prevents fuel from flooding or overflowing from the fuel reservoir. The Fuel Set Lever resets the float so the Fuel Constant Level Valve can resume operation.

The fuel reservoir is a tank which contains a float assembly, a safety mechanism, and a priming lever. Both the Monitor 21 and 40 fuel control valves are basically the same, however they are of different size and material and can not be interchanged.

Fuel enters the Fuel Constant Level Valve through an inlet at the bottom of the reservoir. As the level of fuel rises, it passes through a filter (which removes most particles and foreign matter from the fuel), flows up through an open inlet valve and enters the tank.

IMPORTANT: The Fuel Constant Level Valve filter should be cleaned or replaced periodically. Time intervals will depend on purity and quality of fuel.

Within the Valve, a float mechanism controls the level of fuel that will be permitted to the reservoir. As the fuel level drops, the float drops down to increase the inlet valve opening to admit more fuel into the valve. When the fuel level reaches its maximum volume, the float rises to shut the inlet valve.

In the event that fuel within the reservoir rises to an abnormally high level, a float within the reservoir rises to trip a safety lever. This safety lever drops to prevent fuel from entering into the reservoir.

Should a foreign substance cause the inlet valve to stick (or prevent it from opening), the Fuel Set Lever is utilized to free the valve and to admit fuel to the reservoir.

CAUTION: Care must be taken to prevent dust, dirt, or other debris from clogging or blocking the inlet valve.

1-24 SOLENOID PUMP
The Solenoid Pump is mounted the Fuel Constant Level Valve, controlled by a microprocessor, and
four modes (High, Medium-High, Medium-Low, Low) fuel flow is delivered to the Burner Pot.

1-25 ELECTRICAL SYSTEM
Electrical power is supplied to the Monitor to run the Microprocessor and the other electrically-energized component.

Electrically operation of the Monitor can be thought of as having the following eight (8) distinct phases: plug in; turn-on; pre-purge/pre-heat; ignition; pre-combustion; heating; Shutdown and post-purge.

All electronic diagrams, such as wiring diagram, circuit board layout, and electrical schematic can be found in Section 7 of this Service Manual.

1-26 MICROPROCESSOR
Principally consisting of a 64-pin Integrated Circuit, the Microprocessor provides safety timings, controls relays and provides clock and thermostat functions for the Monitor heater. A component layout of the Printed Circuit Board is found in Section 7 of this Service Manual.

1-27 TEMPERATURE SENSOR
The sensor which is capable of sensing room temperature within a range of 42°F to 96°F, can be left mounted on the back of the heater cabinet or be wall mounted.

Approximately 6'/2" (about 200 cm) of No. 20 AWG Wire is supplied with the sensor to facilitate wall mounting the sensor in a favorable location.

1-28 SAFETY MECHANISMS
Several safety mechanisms have been built into the Monitor Heating System. These devices protect the user against personal injury, protect the heater against damage, and shutdown the heater if a malfunction occurs.

1-29 CLOTH COVERED EXHAUST PIPE
Insulating cloth covers are to be placed over all metal surfaces of the Exhaust Line during installation.

Since combustion by-products are vented at elevated temperatures, the Exhaust Pipe will become hot during operation. The insulating cloth covers protect the user from burn hazards associated with accidental contact with these heated metal surfaces.

During installation make sure that all Exhaust Lines are tight. Do not operate the heater without the insulating covers.

1-30 AIR CIRCULATION FAN GUARD
This guard is an integral part of the fan assembly. The guard protects the user against physical injury which could occur from accidental contact with revolving metal fan blade.

1-31 FUSE
2-amp. and 10-amp., 125VAC, fuses protect the heater from damage resulting from power overloads.

In the event of a power surge or internal wiring hazards, the fuse opens and power to the heater is cut off.

The electrical outlet into which the heater is connected should be protected by at least a 15-amp. fuse or circuit breaker.

1-32 OVERHEAT PROTECTOR SWITCHES
Connected in series, two (2) normally-closed Overheat Protector Switches safeguard the heaters against damage due to overheating.

The Monitor 21 switches are rated 110°C (230°F). The Monitor 40 switches are rated 115°C (239°F). Should a Monitor overheat (internal temperatures rise beyond 110°C (230°F) on the Monitor 21, 115°C (239°F) on the Monitor 40) either or both switches will open to shut down the heater. After extinguishing the flame, the Burner Status indicators continue to blink. The Overheat Protector Switches will automatically reset after cooling down.

Once the heater has cooled to 80°C (176°F), the system can be restarted. To restart the Monitor, proceed as follows:

A. Press ON/OFF Switch to OFF.
B. Allow heater to cool.
C. Troubleshoot the cause of the overheat.
D. Press ON/OFF switch to ON
E. Proceed with normal operation.
MONITOR HEATING SYSTEMS
Section 1: Description

Figure 1-2: ELEMENTS OF COMBUSTION SYSTEM (MONITOR 21)
2-1 INTRODUCTION
Installing the Monitor System at the user's location can be performed quickly and economically. The Monitor 21 can be used as either an internally fueled (capsule tank) or remotely fueled System. The Monitor 40 model is strictly a remotely fueled system and both are externally vented. As such both need the installation of an externally vented intake/exhaust system and if remotely fueled, will need the installation of a remote fuel storage tank.

By completing each step of the easy-to-follow installation instructions (each step should be completed in the exact order specified), the Technician is directed through the installation process.

This section contains all relevant installation information including:
- Installation specifications
- List of installation tools
- Alternative types of venting systems (and installation procedures for each)
- Basic requirements for fuel tank installation
- Instructions to install the Monitor System

IMPORTANT: Before beginning installation of the Monitor vented heating system (including any electrical wiring and fuel supply equipment), check local building, electrical, mechanical, and fire codes. The requirements of these codes must be followed to ensure lawful installation and use.

The heater can be located almost anywhere within the dwelling provided that electrical, fuel, and exhaust specifications are met.

2-2 PHYSICAL PLACEMENT OF HEATER
In addition to the space taken up by the heater, interior space must also be reserved for free air circulation. Remove all combustibles from the heating area.

Unless building or fire codes dictate otherwise, the Monitor system can be placed on any floor surface (including carpeting or other combustible material) and provide safe operation.

2-3 DRILLING REQUIREMENTS
Through-the-wall Flue Pipe installation requires that a 2 1/4" (65mm) hole be drilled through the dwelling wall (interior to exterior). The hole must be pitched downward toward the outside at an approximate angle of 2° (about 1/4" per foot). The appropriate wall area (in which hole will be drilled) must contain no internal obstacles such as piping, wiring, air ducts, or studs.

RECOMMENDED TOOL KIT FOR MONITOR HEATER SERVICE TECHNICIANS
1) #2 Phillips Head Screwdriver
2) Steel Tape Measure
3) Felt Tip Pen or Pencil
4) Caulking Material (exterior grade)
5) Electrical Drill
(reverse capability recommended)
6) Hole Saw, Saber (Jig) Saw, or other appropriate tool for cutting a 2.5" diameter hole for flue pipe
7) Rubber Clipping Tool
8) Long Drill Bit
9) #2 Standard Screwdriver
10) Adjustable Wrenches (various sizes)
11) Copper Tubing Cutter
12) Copper Tubing Flaring Tool
13) V.O.M. (Volt, OHM. Meter with shielded probes)
14) Level
15) Plumber's Pipe Thread Tape
16) Small assortment of Self-Tapping Screws
17) Assorted Pliers (Simp Joint, Needle-nose, Cutting, Lock Joint)
18) Phenolic Probe or Insulated Screwdriver
19) Supply of 125V, 3 Amp fuses
20) Floor mat to cover carpeting
21) Quart size pan for draining fuel

2-4 POWER REQUIREMENTS

WARNING

THE MONITOR POWER CORD MUST BE PLUGGED INTO A DIRECTLY ACCESSIBLE WALL OUTLET. DO NOT USE AN EXTENSION CORD TO MAKE THIS ELECTRICAL CONNECTION.

Line current to the system should be 120 VAC at 60 Hz. The electrical system should be protected against current overload by means of at least a 15-ampere fuse or circuit breaker.

NOTE: The wall outlet should supply electricity for the Monitor system only. Do not connect any other electrical appliance to it.

CAUTION: In some installations, it may be best to hard-wire the heater to the house circuits. A competent, licensed electrician should do this.
2-5 FUEL TANK REQUIREMENTS

WARNING:

INSTALLATION OF ANY REMOTELY LOCATED FUEL TANKS MUST COMPLY WITH ALL LOCAL STANDARDS AND/OR BUILDING CODES.

Heater fuel (crystal clear kerosene only) can be stored in remotely located storage tanks ranging from 55 gallon drums to 275 gallon tanks. When using large tanks a pressure regulator with a max. of 2.5 PSI should be installed near heater inlet.

CAUTION: In some installations, it may be better to install permanent fuel tank plumbing. A licensed Plumber should do this.

2-6 TEMPERATURE SENSOR WIRING REQUIREMENTS

A wall-mounted temperature Sensor gauges room temperature and automatically regulates the heating cycles of the Monitor System.

The standard sensor wire is 6' long and can be left mounted on the back of the cabinet as shipped. If this is not practical the sensor can be mounted on a wall.

CAUTION: If sensor is to be mounted remotely be careful not to place it in direct sunlight, on uninsulated exterior walls in drafty areas etc., as this will create an inaccurate temperature reading.

2-7 BUILDING CODES

Fire regulations, electrical and other local building codes may govern the installation and use of a vented heater and related fueling systems. Prior to installation, check and comply with all codes.

2-8 UNPACKING

Save all shipping materials until the Monitor has been completely installed and is working properly.

A. Cut the two plastic ribbons that hold the shipping carton together.
B. Remove the top.
C. Remove from the shipping carton the Cardboard (drilling) Template and the Owner’s Guide.

NOTE: The Dealer should complete the Registration Card at time of customer purchase and return it to Monitor Products, Inc. as soon as possible.

D. Remove the spill tray from shipping carton, and remove the plastic bag.
E. Remove the plastic bag covering the heater.
F. Remove the plastic bag containing the heater parts, and set it aside.
G. Remove the Flue Pipe from the rear of the heater. When ready to install, separate Flue Pipe from cardboard packing materials.
H. Firmly grasp cabinet handles (one on each side of heater cabinet) and lift heater off the cardboard shipping base.
I. Check for parts as listed in Monitor Owners Guide.

IMPORTANT: Only the standard-size Flue Pipe is shipped with the heater. The Monitor dealer will also stock Medium Flue Pipes, Window Kits, Extension Kits, and other accessories that may be required for non-standard installations.
MONITOR HEATING SYSTEMS
Section 2: Installation

Frontal Clearance

Combustible

24" (60cm) or more

5 1/2" (13.5cm)

Body Clamp

Heater

Wall

Any construction above Flue Pipe must not come within 24" (60cm) of front obstacle

24" (60cm) or more

Front Obstacle

Ground or slab surface

Overhead Clearance

Combustible

24" (60cm) or more

5 1/2" (13.5cm)

Body Clamp

Heater

Non-combustible

24" (60cm) or more

12" (30cm) or more

Flue Pipe

Wall

combustible

24" (60cm)

12" (30cm) or more

Flue Pipe

Ground or slab surface

Side Clearance

Body Clamp

Heater

Side obstacle

18" (45cm) or more

Flue Pipe

Wall

Figure 2-1 FLUE PIPE CLEARANCES
HOW TO PREVENT FREEZING IN COLD CLIMATE.

Exhaust Elbow

24" (60cm) or more

Front Obstacle

20" (50cm) or more

SNOW SURFACE or GROUND

Figure 2-2 FLUE PIPE CLEARANCES
NOTE: After using the installation template as a guide for drilling the flue pipe hole, the Monitor Flue Pipe can be normally installed according to the Illustration procedure in the Monitor Manual.

Just in case the template was misplaced, the approximate flue pipe hole location measurements are as follows:

![Flue Pipe Location Diagram](image)

2-9 INSTALLATION OF FLUE PIPE WINDOW KIT

A window kit makes it possible to vent the heater from dwellings in which through-the-wall venting is neither practical nor possible.

The Window Kit is available in two sizes. The Short Window Kit accommodates windows from 20 to 32" wide; the Long Window Kit accommodates windows from 31 to 50" wide.

NOTE: The procedure below describes how a Window Kit is installed in a double-hung window. The Window Kit can also be installed in a vertical, sliding type window.

Install the Window Kit in the manner outlined below:

STEP 1: Install Flue Pipe in Window Kit

A. Push the rubber seal into the Flue Pipe hole on the window kit frame. The hole on the seal should be positioned at the exterior side of the frame.

B. Using the four (4) Phillips head screws, fasten the spacer to the frame.

C. With the arrow on the Flue Pipe pointing UP, align the screw holes on the Flue Pipe with those on the Spacer. Secure with three (3) Phillips head screws.

![Flue Pipe Window Kit Diagram](image)
STEP 2: Install Window Kit in the Window

IMPORTANT: Prior to installation, clean the window frame of all dust, dirt, and debris.

A. Raise the lower window
B. Place the window kit frame into the innermost track of the window.
C. Expand the frame until it fits loosely within the width of the window; it may be necessary to loosen the large set screw on the frame in order to do so.
D. Slightly lift window kit frame. Slide the L-Adapter under the frame and position it at the point where the inner and outer frame meet.
E. Expand the frame to fit the window tightly. Adjust the position of the L-Adapter, if necessary. Tighten the set screw to secure the frame. Secure the L-Adapter to the window sill with two (2) wood screws.
F. Lower the window firmly down upon the top of the Window Kit frame.
G. Measure the width of the upper (outer) window (which is located in the outer track). Cut a length of the Rubber Packing to this size. Remove the protective backing and firmly mount it onto the underside of the outer window.

Figure 2-4
STEP 3: Install Window Lock
A special window lock replaces the usual clamshell lock.

To install the window lock, proceed as follows:
A. Turn locking lever to left and disengage lock from lock bracket.
B. Attach lock bracket to left-hand side of upper window frame. Use the two wood screws provided.

NOTE: If the lock bracket prevents the lower window from sliding upward, notch the bracket into the upper window frame.

C. Slip lock into lock bracket.

IMPORTANT: Window can be locked by turning locking lever to right; to open, turn locking lever to left and remove lock from bracket.

D. Two adjustable-position stops are supplied to accommodate various window sash thicknesses. If short stop is too small, remove two retaining screws and brackets which hold the short stop to the underside of the lock. Remove the short stop and substitute the long stop. Adjust to proper position, and secure with screws and washers previously removed. (Before securing the stop to the window, remove the protective backing and firmly stick the stop packing onto the underside of the stop.)

NOTE: Windows with deep sills may require the use of an extra intake and exhaust elbow to provide clearance for flue pipe hook up. A piece of the air intake line can be cut to join the two intake elbows together.

Deep Window Sill
One Exhaust Elbow
Two Intake Elbows

Figure 2-5
2-11 INSTALLING AN EXTENSION KIT
Installing an Extension Kit requires the construction of an air line and the exhaust line. The air line is connected between the Air Supply Elbow at the rear of the heater and the air inlet port on the Flue Pipe. Similarly, the exhaust line is connected between the joint pipe at the rear of the heater, and the exhaust port on the Flue Pipe.

IMPORTANT: The PVC air line is longer than the exhaust line and may need to be cut to size. Be sure, however, to thoroughly deburr all rough edges.

<table>
<thead>
<tr>
<th>ITEM#</th>
<th>DESCRIPTION</th>
<th>ITEM#</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PIPE, Air supply</td>
<td>6</td>
<td>PIPE CLAMP, Bottom</td>
</tr>
<tr>
<td>2</td>
<td>JOINT, Air line</td>
<td>7</td>
<td>SCREW, Legs, mounting</td>
</tr>
<tr>
<td>3</td>
<td>ELBOW 90° Air line</td>
<td>8</td>
<td>SCREW, Pipe Clamp</td>
</tr>
<tr>
<td>4</td>
<td>LEG, Wall-standoff</td>
<td>9</td>
<td>BOND, Adhesive</td>
</tr>
<tr>
<td>5</td>
<td>PIPE CLAMP, Top</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2-13 TYPICAL MONITOR LIFTER PUMP INSTALLATIONS

For more detailed information look under Kerosene Lifter manual.

Figures 2-7
2-14 USES FOR THE ELBOW ADAPTER KIT
Convert from Monitor 20/30 to 21/40 using an elbow adapter Kit (part#8213) and utilizing existing flue pipe installation.

PARTS LIST EXPLODED

<table>
<thead>
<tr>
<th>Name</th>
<th>No. in Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhaust Pipe Clamp</td>
<td>1</td>
</tr>
<tr>
<td>Exhaust Elbow</td>
<td>1</td>
</tr>
<tr>
<td>Exhaust Joint</td>
<td>1</td>
</tr>
<tr>
<td>Joint Supporter</td>
<td>1</td>
</tr>
<tr>
<td>Heat Insulation Cover</td>
<td>1</td>
</tr>
<tr>
<td>Self-Tapping Screws</td>
<td>2</td>
</tr>
<tr>
<td>Hose Clamp (this part comes with your Monitor™ Heater)</td>
<td>1</td>
</tr>
<tr>
<td>Air Damper (this part comes with your Monitor™ Heater)</td>
<td>1</td>
</tr>
<tr>
<td>Flue Pipe (this part comes with your Monitor™ Heater)</td>
<td>1</td>
</tr>
</tbody>
</table>

A. Remove Monitor 20/30 heater and flue pipe.
B. Install Monitor 21/40 flue pipe into sleeve.
C. Slide the exhaust elbow onto the exhaust port opening on the rear of the heater. (To locate exhaust port opening, see your Monitor Owner’s Guide.)
D. Secure the exhaust elbow by attaching the exhaust pipe clamp to the heater cabinet with two self-tapping screws.
E. Cover the adjustable exhaust pipe with heat insulation cover.

F. Remove metal cap on side mounted exhaust port of flue pipe and replace into the port (the Monitor 21/40 is now ready to be positioned into place.)

NOTE: Be sure the exhaust elbow is firmly fixed on the flue pipe with a joint supporter.

G. Insert air supply elbow opening over flue pipe air intake flange and secure with hose clamp.

NOTE: The Standard Air Damper is installed over the flue pipe “air intake flange.” (To locate flue pipe “air intake flange”, see your Monitor™ Owner’s Guide.)

Elbow adapter kits may also be used to raise a flue pipe high enough to clear certain base board heating systems.

2-15 FUEL TANK INSTALLATION
Pictorial views of alternative types of storage facilities and delivery systems are illustrated (Figure 2-10).

Since fuel storage tank installation techniques vary from place-to-place (often dependent upon applicable codes), a particular installation procedure cannot be specified. However, certain criteria govern the fuel hook-up of the Monitor. Use the following check list as a guide to the fuel storage facilities:

WARNING:

USE ONLY CRYSTAL CLEAR KEROSENE. NEVER USE GASOLINE, WHITE GAS, CAMP FUEL OR OTHER FLAMMABLE LIQUIDS. USE OF SUCH FUELS CAN RESULT IN AN EXPLOSIVE FIRE AND CAUSE SEVERE INJURY.

Fueling Options Available
Fueling of the Monitor Heating Systems can be accomplished in one of 3 ways:
1. Capsule Tank (on the Monitor 21).
2. Gravity Fed Large Capacity External Tank: Practical for large heating needs where bulk delivery of kerosene is available. This system should be installed by a qualified plumber or fuel supply technician.
3. Large Capacity External Tank with Pump: For large heating needs where a gravity fed system is not practical. An electric pump, the Monitor™ Kerosene Lifter, especially designed for use with Monitor heating systems.

*If a pumping system is used is used to supply fuel, the inlet pressure to the heater must not exceed 2.5 psi.
To install a large capacity, gravity fed external tank, follow the instructions below. Use of a qualified installer is recommended.

- Installation height of the bottom of the fuel tank should be 16 inches or more above the floor surface on which the heater stands. This insures that inlet fuel pressure will be sufficient. The top of the fuel tank should be no higher than $8'\frac{1}{2}$ feet above the floor under the heater. This insures that inlet fuel pressure will not be excessive.
- The horizontal length of piping should not exceed 100 feet and should be free of sharp bends or obstructions.
- Piping should include no inverse U-type bends (to avoid air locks, which could block the fuel supply).
- Only $\frac{3}{4}$-inch OD copper tubing should be used. The tubing should be bent carefully to avoid crimping.
- A fuel filter is recommended for use on the fuel line near tank, and a shut-off valve should be installed at the tank.
- flare connections should be used at the fusible link valve connection on the heater and at the fuel filter to be installed at the tank.
- The fuel tank should be located no closer than 6 feet to a source of heat.
- The fuel tank should have an opening for filling on the top and a vent with a weather-proof cap on the side. One some tanks the vent and fill spout use the same opening.

55, 100, and 250 gallon tanks must contain:
- Shut-off valve at tank outlet
- Disposable fuel filter (protects heater against condensation and other impurities)
- Fueling inlet (protected by weather-proof cap)
- Ventilation outlet
- Clearance of at least 6' from any source of heat

Allowable Height Dimensions:
- Bottom of tank-at least 16" above floor holding heater (maintains sufficient pressure)
- Top of tank-maximum of $8'\frac{1}{2}$ above floor holding heater (prevents excessive line pressure)
- Position of Lifter-more than 8' above fuel inlet of heater requires pressure reduction valve.

RECOMMENDATION
Pipe fittings in the fuel supply to the Monitor heating systems should be sealed with pipe thread tape. The supply line from the tank to the Monitor™ Kerosene Lifter must be absolutely air tight. 275 gallons and bigger tanks should have a 2.5 P.S.I. max pressure reducer to avoid excessive pressure at heater inlet.

2-16 HEATER INSTALLATION
The Monitor heaters can be physically situated on carpeting or other combustible flooring with complete safety. The selected heater site must be accessible to an electrical outlet, must support free air circulation (both internal and external), and must not contain combustible materials in the heater's immediate vicinity.

Figure 2-9 ALTERNATIVE SOURCES OF FUEL STORAGE
MONITOR HEATING SYSTEMS
Section 2: Installation

Figure 2-10 TYPICAL FUEL LINE CONNECTIONS

20
3-1 INTRODUCTION
Monitor is an easy-to-operate vented kerosene heater. Routine operation features high BTU output, automatic adjustment of room temperature, low fuel and power consumption, and choice of automatic or manual heater operation.

This section provides all information necessary to operate the Monitor Heating System. All operation procedures specified should be performed in the order in which they are described.

3-2 OPERATING SPECIFICATIONS
The following specifications apply to the operation of the Monitor 40 and the Monitor 21:

Monitor 40
— Rated Efficiency (as applied to kerosene heaters): 93%*
— Rated Efficiency (as applied to central heating systems): 87%
— Power Consumption: as follows

<table>
<thead>
<tr>
<th>IGNITION</th>
<th>HIGH</th>
<th>MEDIUM-HIGH</th>
<th>MEDIUM-LOW</th>
<th>LOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>BURN</td>
<td>340watts</td>
<td>65watts</td>
<td>58watts</td>
<td>58watts</td>
</tr>
</tbody>
</table>

— Circulation Fan Output: 388 cubic feet/min.
— Fuel source: Remote, separate tank
— Potential heating area: 900-3200 sq. feet

*The energy from the combustion process is released in the form of heat and vaporized water. Normally, heating systems discharge water from combustion to the atmosphere without condensing it. This 93% efficiency rating means that, assuming the water cannot be condensed, 93% of the heat produced by the combustion process is recovered. Assuming the water can be condensed, the efficiency is 87%.

NOTE: Actual effective heating area depends upon numerous factors such as type and severity of climate, type of dwelling construction, condition of dwelling, and thickness and effectiveness of dwelling insulation.

Table 3-1 lists Monitor 40 performance specifications at various user-selected heat output settings.
Monitor 21
— Rated Efficiency (as apply to kerosene heater): 93%
— Rated Efficiency (as apply to central heating systems): 87%
— Power Consumption: as follows

<table>
<thead>
<tr>
<th>HIGH</th>
<th>MEDIUM-HIGH</th>
<th>MEDIUM-LOW</th>
<th>LOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGNITION</td>
<td>BURN</td>
<td>BURN</td>
<td>BURN</td>
</tr>
<tr>
<td>250watts</td>
<td>52watts</td>
<td>51watts</td>
<td>50watts</td>
</tr>
</tbody>
</table>

— Circulation Fan Output: 176 cubic feet/min
— Fuel source: 1.32 U.S. gal., separate tank optional
— Potential heating area: 600-2000 sq. feet

Table 3-2 lists Monitor 21 performance specifications at various user-selected heat output settings.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Rating</td>
<td>9,600</td>
</tr>
<tr>
<td>Heater Output/hr.</td>
<td>8,900</td>
</tr>
<tr>
<td>Fuel Consumption (gal/hr)</td>
<td>0.07</td>
</tr>
<tr>
<td>8-hrs/day burntime (1.32-gal. tank)</td>
<td>2.4days</td>
</tr>
<tr>
<td>Continuous-use burntime (1.32-gal.tank)</td>
<td>18.9hrs.</td>
</tr>
<tr>
<td>8-hrs/day burntime (55-gal.tank)</td>
<td>96.2days</td>
</tr>
<tr>
<td>Continuous-use burntime (55-gal.tank)</td>
<td>32.7days</td>
</tr>
</tbody>
</table>
3-3 OPERATING CONTROLS AND INDICATORS

Several controls and indicators are used to operate the heater and to monitor its performance as follows:

![Control Diagram](image)

<table>
<thead>
<tr>
<th>Figure and Item No</th>
<th>Control or Indicator</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 3-1, Item 1</td>
<td>RUN Indicator Light</td>
<td>Light to indicate that power has been applied to heater. Illuminates when operation ON/OFF pushbutton switch is pressed to position ON.</td>
</tr>
<tr>
<td>Figure 3-1, Item 2</td>
<td>AUTO Indicator Light</td>
<td>Lights when heater runs in automatic mode. AUTO, RUN, and appropriate BURNER STATUS Indicators are illuminated simultaneously if heater is burning.</td>
</tr>
<tr>
<td>Figure 3-1, Item 3</td>
<td>Empty Indicator Light</td>
<td>In case of using the cartridge tank, when the fuel is empty, EMPTY Indicator Light blinks. This Light is not provided with Monitor 40.</td>
</tr>
<tr>
<td>Figure 3-1, Item 4</td>
<td>BURNER STATUS Indicator Lights</td>
<td>Light in accordance with heat output as follows:</td>
</tr>
<tr>
<td>FIGURE AND ITEM NO</td>
<td>CONTROL OR INDICATOR</td>
<td>FUNCTION</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Figure 3-1, Item5</td>
<td>TEMP Indicator Light</td>
<td>Lights when heater is running and Digital Window is showing the temperature.</td>
</tr>
<tr>
<td>Figure 3-1, Item6</td>
<td>AM Indicator Light</td>
<td>Indicates SET and ROOM temperature when heater is running, and indicates time when heater is Off. Indicates time and temperature for automatic operation setting.</td>
</tr>
<tr>
<td>Figure 3-1, Item7</td>
<td>PM Indicator Light</td>
<td></td>
</tr>
<tr>
<td>Figure 3-1, Item8</td>
<td>Digital Display</td>
<td></td>
</tr>
</tbody>
</table>
| Figure 3-2, Item9 | TIMER SELECTOR | Displays set and current room temperature when heater is ON. Displays current time (after time has been programmed) when heater is OFF. Prior to programming, 88:88 is displayed on clock.
NOTO: During routine heater operation, the selector switch is normally set to this position. |
| Figure 3-2, Item10| CLOCK SET | Programs current time on Clock by use of HOUR and MINUTE push-button switches.
NOTO: Prior to programming current time, Digital Display shows 88:88.
IMPORTANT: Once current time has been programmed, press the SET pushbutton switch within 60 seconds. Otherwise clock display will revert to previously programmed time, if any. |
| Figure 3-2, Item11| 1ST Position | Programs first automatic heater operation.
When programmed, heater automatically operates at specified time and temperature (i.e. 6:00 a.m., 70°F), if set for AUTO, providing that heater has been set for automatic mode of operation.
IMPORANT: Once time and temperature have been programmed, the SET push-button switch must be pressed within 15 seconds. Otherwise, time and temperature will revert to previously programmed time, if any.
When selector switch is set to this position, 1st presently programmed time and temperature are displayed. |
| Figure 3-2, Item12| 2ND Position | Programs second automatic heater operation as same as 1st position. |
MONITOR HEATING SYSTEMS
Section 3: Operation

<table>
<thead>
<tr>
<th>FIGURE AND ITEM NO</th>
<th>CONTROL OR INDICATOR</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 3-2, Item3</td>
<td>3RD Position</td>
<td>Programs third automatic heater operation as same as 1st position.</td>
</tr>
<tr>
<td>Figure 3-2, Item4</td>
<td>4TH Position</td>
<td>Programs fourth automatic heater operation as same as 1st position.</td>
</tr>
<tr>
<td>Figure 3-2, Item5</td>
<td>TIME push-button switch</td>
<td>This switch is used to set time and change display over.</td>
</tr>
<tr>
<td>Figure 3-2, Item6</td>
<td>TEMP push-button switch</td>
<td>This switch is used set temperature and change display over.</td>
</tr>
<tr>
<td>Figure 3-2, Item7</td>
<td>HOUR/UP, MINUTE/DOWN repetitive-action push-button switch</td>
<td>Programs time or temperature. NOTE: Each time push-button switch is pressed, the digit advances in increments of one digit. If push-button is pressed and held, the digits are advanced repetitively.</td>
</tr>
<tr>
<td>Figure 3-2, Item8</td>
<td>SET push-button switch</td>
<td>“Sets” time and/or temperature. If this control is not pressed after time and/or temperature have been programmed, the time and/or temperature programmed (as indicated by display window) will not be accepted, and will revert to previously programmed time and/or temperature.</td>
</tr>
<tr>
<td>Figure 3-2, Item9</td>
<td>CLEAR push-button switch</td>
<td>Erases programmed time and temperature. When cleared, time and/or temperature previously programmed and displayed disappear(s) from window. IMPORTANT: Both current time and automatically programmed time(s), temperature(s) will have to be reprogrammed if electrical operation is interrupted by power failure or by disconnecting heater plug from wall outlet. If this occurs, the heater will go into MANUAL mode of operation and maintain initial set temperature (72°F).</td>
</tr>
<tr>
<td>Figure 3-2, Item20</td>
<td>ON/OFF push-button switch</td>
<td>ON position (push-button is “in”) applies power to the unit. When this occurs, the RUN indicator lights to indicate that heater operation has begun. OFF position (push-button is “out”) remove power from the heater. All circuits—except for Clock and Air Flow—are shut down.</td>
</tr>
</tbody>
</table>
FIGURE AND ITEM NO | CONTROL OR INDICATOR | FUNCTION
--- | --- | ---
Figure 3-2, Item21 | AUTO push-button switch | Places heater in automatic mode of operation. AUTO indicator lights to confirm automatic operation.
Assuming that the heater has been properly programmed, heater will operate automatically.
When pressed again, AUTO indicator goes out and then heater will operate in MANUAL mode. During manual operation, the user turns heater ON and OFF, at will.

3-4 PRE-OPERATION CHECK LIST
After heater installation, but prior to Monitor heater start-up, inspect the system for operational readiness. The following check list specifies those items that should be inspected on a routine basis:

☑ Check that the Monitor heater is plugged into wall outlet (120 Vac, 60 Hz)
☑ Verify that adequate supply of kerosene is available in fuel tank
☑ Confirm that fuel is free of water or other contaminants
☑ Check fuel tank for good operating condition; it must be free of rust, corrosion, and/or leaks
☑ Inspect Fuel Line for signs of leaks, loose connections, cracks, air pockets or blockages
☑ Confirm that Fuel Valves on Fuel Tank and Fusible Link Valve are open so fuel can flow freely
☑ Outside dwelling, check area immediately around Flue Pipe for combustibles or obstructions to free air circulation
☑ Inspect Air Line for cracks, loose connections or blockage
☑ Check Exhaust Line for cracks, loose connections or blockage
☑ At rear of heater, verify that air flow to the Air Circulation Fan is not blocked
☑ Inspect dwelling interior and confirm that immediate area near heater is free of combustible and objects that might interfere with free air flow.
☑ Make certain that Heat Sensor is not exposed to drafts, direct sunlight, nor direct heat from the Monitor.
☑ Confirm that heater is level

If this inspection reveals any system deficiencies, correct the problems before operating the heater.

3-5 OPERATION
Operation of Monitor heater can be controlled manually by the user, or run automatically by the microprocessor.

Paragraphs 3-6 through 3-10 provide the details of heater start-up, operation, and shutdown. The controls and indicators illustrated by Figure 3-1 and 3-2 are used to operate the system and to monitor the heater’s performance.

3-6 MANUAL HEATER OPERATION
Operation of the heater is under the direct control of the user (heater will not operate automatically). The heater will, however, automatically respond to changes in room temperature signaled by the Heat Sensor to maintain the temperature of the room at a comfortable level.

NOTE: Resetting the Fuel Constant Level Valve is necessary only if the heater is being started for the first time, hasn’t been used for an extended period of time, or if tank has run empty. If priming is unnecessary skip to step 2.

STEP1: Prime the Heater
Gently press and release the Fuel Constant Level Valve Reset Lever four or five times.

STEP2: Select Manual Operation
If heater operation is in AUTO mode, press the AUTO push-button switch and change Auto to Manual mode.

STEP3: Select Temperature Setting
Press the TEMP push-button switch and press either the UP or DOWN push-button switch to set the digital set room temperature indicator to the desired temperature, and then press the SET push-button switch.
MONITOR HEATING SYSTEMS
Section 3: Operation

IMPORTANT: In case no temperature is set, temperature will automatically be set at 72°F by microprocessor.

STEP 4: Turn Monitor On
Press the ON/OFF push button switch to position ON. The RUN indicator light illuminates to indicate that power has been applied to the instrument and the heater is cycled for manual mode of operation.

3-7 AUTOMATIC HEATER OPERATION
Automatic operation is established by programming the time/temperature settings for specific times. On a daily basis, a maximum of four time/temperature settings can be programmed.

If, subsequently, it should be desired to switch to manual mode of operation, the changeover can be made at any time.

Proceed with automatic mode of operation in the following manner:

STEP 1: Program Clock for Current Time
A. Position TIMER SELECTOR slide switch at position CLOCK SET.
B. Press HOUR push-button switch to program current hour on the Clock.

IMPORTANT: Be sure to clock for AM or PM, as appropriate.

NOTE: Both hour and minute digits on Display Window are advanced in increments of one by pressing the appropriate push-button switch one time for each digit; digits can also be advanced repetitively by pressing and holding the appropriate push-button switch.

C. Press MINUTE push-button switch to program the current minute(s) on Clock.

D. Immediately after programming current time in terms of hours and minutes, press the SET push-button switch.

E. Place TIMER SELECTOR slide switch in position CLOCK/TEMP and verify that time displayed on Clock is the current time.

STEP 2: Program the 1st Time/Temperature
A. Slide TIMER SELECTOR slide switch to position 1st.
B. Press TIME push-button switch.
C. Press HOUR and MINUTE push-button switches to program 1st desired time.

IMPORTANT: Be sure to set the clock AM or PM, as appropriate.

D. Immediately after programming the 1st desired time, press the SET push-button switch. This step must be completed within fifteen seconds after programming the time.

E. Press TEMP push-button switch.

F. Press UP and/or DOWN push-button switch(es) to program 1st desired temperature.

G. Immediately after programming the 1st desired temperature, Press the SET push-button switch. This step must be completed within fifteen seconds after programming the temperature.

STEP 3: Program the Remaining Times
With the TIMER SELECTOR slide switch in the appropriate positions, program the 2nd, 3rd, 4th times as described above.

Be sure to press the SET push-button switch after each time is programmed.

IMPORTANT: Should heater power be interrupted by a power failure or by disconnection of the power cord, heater reverts to MANUAL operation, and all AUTO programming is erased.

STEP 4: Select Automatic Operation
Press AUTO push-button switch. The AUTO indicator light will illuminate.

STEP 5: Turn Monitor ON
Press ON/OFF push-button switch to position ON. The RUN indicator light will illuminate to indicate that power has been applied to the heater.

From this point, heater operation is as follows:

```
<table>
<thead>
<tr>
<th>Time</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:00AM</td>
<td>76°F</td>
</tr>
<tr>
<td>9:00AM</td>
<td>68°F</td>
</tr>
<tr>
<td>5:00PM</td>
<td>80°F</td>
</tr>
<tr>
<td>10:00PM</td>
<td>64°F</td>
</tr>
</tbody>
</table>
```

Example

3-8 REPROGRAMMING THE MONITOR HEATER
On occasion, it may be necessary to reprogram the Monitor.
Reprogramming is performed as specified below:
MONITOR HEATING SYSTEMS

Section 3: Operation

STEP 1: Reprogramming Current Time

(if necessary)

A. Set the TIMER SELECTOR slide switch to position CLOCK SET.
B. Press HOUR and MINUTE push-button switches to program new current time. Set applicable time by watching Clock display.
C. Press SET push-button switch.

IMPORTANT: If SET push-button switch is not pressed, current time will revert to previously programmed time.

STEP 2: Reprogramming Automatic Operation

A. Set TIMER SELECTOR switch to appropriate position (1st, 2nd, 3rd or 4th)
B. Press TIME push-button switch.
C. Press CLEAR push-button switch. Time displayed on window will disappear.
D. Using HOUR and MINUTE push-button switches program new desired time by watching the Display Window.
E. Press SET push-button switch.
F. Press TEMP push-button switch.
G. Press CLEAR push-button switch. Set Temperature displayed on Window will disappear.
H. Using UP and DOWN push-button switches program new desired temperature by watching the Display Window.
I. Press SET push-button switch.

3-9 HEAT SENSOR

Heat Sensor is located on the rear of the cabinet. It is recommended to leave the sensor in its original mounted position. However should relocation be necessary, choose a location for the sensor that is not in the path of direct sunlight, drafts or the flow of warm air from the heater. Loosen the screw and release the sensor from the rear of the cabinet. Fasten the sensor to the wall with the screw.

3-10 MONITOR SHUTDOWN

A simple one-step procedure is utilized to shutdown the Monitor:

Press ON/OFF push-button switch to position OFF; the RUN indicator will extinguish.

IMPORTANT: Once heater has shut down, it cannot be restarted until post-purge cycle has been completed. If ON/OFF switch is left in position ON, Monitor operation will automatically restart upon completion of post-purge.

3-11 OUT OF FUEL

During either manual or automatic operation of heater, fuel in the tank may be depleted.

The Monitor (in case of using external fuel tank) is known to be out of fuel when all of the following symptoms are present:

- Burner Status indicator lights blink.
- Absence of flame (visually verified through view plate on wall of Combustion Chamber).

STEP 1: Turn Heater OFF

Press ON/OFF switch.

STEP 2: Fill Fuel Tank

A. Close shut-off valve at outlet of Fuel Tank.
B. Drain Fuel Tank (from bottom, if possible) to remove all condensation, debris, and old fuel.
C. Fill Fuel Tank with fresh, crystal clear kerosene.
D. Upon completion of step C, open shut-off valve which was closed in step A above.

STEP 3: Turn Heater ON

Press ON/OFF switch to ON. Proceed with normal heater operation.

The Monitor 21 (in case of using capsule fuel tank) is known to be out of fuel as follows:

When the EMPTY indicator light illuminates and flashes, a buzzer will sound for twenty seconds. The burner mode is changed to “Low” automatically, and then, the heater will shut off after 30 minutes.

The remaining burning time is indicated at the Display Window.

Refueling:

STEP 1: Turn Heater OFF

Press ON/OFF switch and wait 15 minutes for the heater to cool.

STEP 2: Lift Out the Capsule Fuel Tank

Open the tank cover and lift out the capsule fuel tank.

Turn the tank upside down, and remove the fuel cap.

STEP 3: Fill the Capsule Fuel Tank

Fill the capsule fuel tank with fresh, crystal clear kerosene by using a siphon.

STEP 4: Reinstall the Capsule Fuel Tank

Replace and tighten the fuel cap. To insure proper fuel flow, be sure the cap is secured correctly.
Install the tank with the arrow pointing forward, and close the tank cover.

STEPS:
- **STEP 5:** Turn Heater ON
 - Press ON/OFF switch to ON. Proceed with normal heater operation.

3-12 **RECOVERY FROM A POWER FAILURE**
The Monitor is equipped with an automatic reset feature which restores (the manual mode of) operation following interruption of power to the heater. Note, however, that a power-failure automatically triggers a cooling and purge cycle; routine operation will automatically be resumed following purge cycle. A switch to manual mode is automatic because the absence of power to the microprocessor wipes-out the programmed memory.

To recover from a power failure (automatic mode of operation), proceed as listed below:

STEP 1: Program Current Time
STEP 2: Program Automatic Time/Temperature operation cycles.
STEP 3: Return to Automatic operation.

3-13 **RECOVERY FROM OVERHEAT CONDITION**
The Monitor is protected against damage resulting from an overheat condition by two 110°C (Monitor 21), 115°C (Monitor 40) automatic reset thermostats. In the event of an overheat the thermostats are triggered to cut off the flow of kerosene to the Burner Pot, the flame is extinguished automatically, and user is alerted to the overheat condition by blinking of the Burner Status indicators.

To recover from an overheat condition, proceed as outlined below:

STEP 1: Turn OFF Heater
STEP 2: Allow Monitor Heater to cool
NOTE: Be sure that heater is cool to touch.

A period of 30 to 45-minutes should be sufficient to permit heater to cool completely.

STEP 3: Unplug Heater
- Disconnect heater power cord from wall outlet.

STEP 4: Check for Cause of Overheating
NOTE: Overheating is usually caused by objects that impede free air circulation.

Look for debris and other obstructions at front of heater, at Circulation Fan at rear of the heater, and at Flue Pipe tip outside dwelling.

STEP 5: Remove Louver Assembly
STEP 6: Clean Heater Interior

WARNING:

BEFORE PROCEEDING TO CLEAN HEATER, BE SURE THAT HEATER INTERIOR IS COOL ENOUGH TO TOUCH.

With a clean, lint-free, damp rag or other appropriate cleaning material, wipe up all dust, dirt and debris from exterior of cabinet, including exterior of Combustion Chamber and Heat Exchanger.

STEP 7: Replace Louver Assembly
STEP 8: Reconnect Monitor Heater Power Plug to the Wall Outlet.
STEP 9: Turn Heater ON

STEP 10: Reprogram Heater Microprocessor
STEP 11: Select Mode of Operation

CAUTION: If after the completion of recovery procedure, the heater overheats again, something is wrong! Do not operate heater until problem has been diagnosed and corrected.

3-14 **RECOVERY FROM BLOWN FUSE**
All electrical components of the Monitor heater are protected against power overloads and electrical malfunctions by two 2-amp fuses and a 10-amp fuse. Should fuse blow, the recovery procedure is outlined below:

STEP 1: Turn Monitor OFF
STEP 2: Unplug heater
STEP 3: Remove louver assembly
STEP 4: Remove front cover
NOTE: As the Front Cover of the Monitor 40 is connected to the Printed Circuit Board by Lead Wires, pull the Front Cover to the front side slightly and remove the Connector of the Lead Wires from the Printed Circuit Board, and then, remove the Front Cover.

STEP5: Locate and replace fuse(s)

STEP6: Reattach front cover
(In case of the Monitor 40, be sure that the connector is connected to the printed circuit board.)

STEP7: Reattach louver assembly

STEP8: Plug heater power cord into wall outlet

STEP9: Turn Monitor ON

STEP10: Reprogram heater

STEP11: Program Automatic operation cycles (if applicable)

STEP12: Select Automatic operation (if applicable)
4-1 INTRODUCTION
Heater maintenance is divided into two classifications; periodic maintenance is required to maintain the heater in good operating condition; corrective maintenance is necessary to repair a malfunction.

4-2 PERIODIC MAINTENANCE
The Maintenance Schedule provided in Table 4-1 describes the tasks that must be performed periodically in order to sustain the efficiency of the Monitor Heating Systems.

At the time of the demonstration or installation, heater maintenance should be discussed with the user; emphasize that a clean heater and proper fuel are the keys to optimum heater operation and performance.

Table 4-1 SUGGESTED MAINTENANCE ACTIVITIES

<table>
<thead>
<tr>
<th>Activity</th>
<th>Material</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check all fuel lines for leaks and loose connections</td>
<td>3/8" OD copper tubing</td>
<td>Fuel lines must be secure and free of leaks. Replace tubing when necessary.</td>
</tr>
<tr>
<td>Inspect exhaust lines for leaks or loose connections</td>
<td></td>
<td>All exhaust lines must be covered by a cloth insulation cover.</td>
</tr>
<tr>
<td>Check fuel for water and/or other contamination.</td>
<td></td>
<td>Fuel color should be crystal clear. If fuel is contaminated, see Corrective Maintenance procedure, paragraph 4-9,</td>
</tr>
<tr>
<td>If the capsule tank is used on the Monitor 21 the capsule tank filter should be checked, cleaned or replaced.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspect Fuel Pipe for obstruction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspect electrical wiring for cracks, signs of deterioration, bare wires and/or loose connectors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean heater</td>
<td>Clean, lint-free cloth and a mild non-abrasive household cleaning agent. USE ONLY NON-PETROLEUM DISTILLATE CLEANERS.</td>
<td>Wipe down exterior of heater cabinet. Vacuum heater interior (if necessary).</td>
</tr>
<tr>
<td>Clean Air Circulation Fan (Monthly)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspect air lines for leaks or loose connections.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspect rubber Air Hose at rear of heater.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean fuel constant level Valve filter. Inspect fusible link Valve input fitting. Clean only if necessary, Verify that heater is level.</td>
<td>Clean Kerosene</td>
<td>Refer to paragraph 4-5. Procedure is described in paragraph 4-6. Check Leveling Guide.</td>
</tr>
</tbody>
</table>
MONITOR HEATING SYSTEMS
Section 4: Maintenance

<table>
<thead>
<tr>
<th>Activity</th>
<th>Material</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspect Combustion Ring, Flame Sensor Rod and Baffle. (Suggested frequency every 3 years).</td>
<td></td>
<td>Clean all carbon deposits. Replace if excessively worn or cracked. NOTE: If any gaskets are torn when Components are removed, the gasket must be replaced.</td>
</tr>
<tr>
<td>Clean Combustion Chamber (every 3 years)</td>
<td>Vacuum all carbon deposits from interior of chamber.</td>
<td></td>
</tr>
<tr>
<td>Inspect air holes in Burner Pot</td>
<td>Use a small, stiff brush or a short length of soft copper wire to clean any blocked holes.</td>
<td></td>
</tr>
<tr>
<td>Clean Igniter</td>
<td>Scrape any carbon deposits from igniter.</td>
<td></td>
</tr>
<tr>
<td>Check air line that interconnect Combustion Blower and Air Pressure Switch.</td>
<td>Replace air line that is worn, broken or brittle.</td>
<td></td>
</tr>
<tr>
<td>Check for carbon build up in fuel inlet going into burn chamber (every year)</td>
<td>Disconnect copper fuel line from burn chamber and clear fuel inlet line by reaming with a phillips head screw driver which should be able to go in approximately "without obstruction.</td>
<td></td>
</tr>
<tr>
<td>CAUTION: If any obstruction is felt remove igniter before proceeding.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4-3 INSPECT EXHAUST/AIR LINES
Verify that all exhaust and air lines are free of leaks and loose connections, as specified below:

STEP1: Remove Protective Cloth
Remove cloth insulation cover(s) from all exhaust lines.

STEP2: Inspection of Exhaust/Air Lines
A. Visually inspect both air and exhaust lines for obvious cracks, leaks or loose connections. Black carbon deposits may be evidence of these leaks.
B. Be sure that all lines are installed tightly and securely, especially at joints.
C. Turn heater ON.
D. Carefully apply a small amount of soapy water (with a paint brush) to the surface areas of the air/exhaust lines.
Any leaks that may exist will be readily identified by the appearance of bubbles.

STEP3: Return to Operating Condition
A. Turn heater OFF.
B. Dry all lines with paper towels.
C. Repair any leaks that have been found (if necessary, replace the tubing).
D. Replace cloth insulation covers.

4-4 VERIFY IGNITER OPERATION
Visually inspect Igniter Operation

WARNING:
HEATER IS OPERATIONAL DURING THIS INSPECTION. AVOID DIRECT CONTACT WITH ANY HEATED OR ELECTRICAL COMPONENT.

STEP1: Prepare for Inspection
Remove Louver Assembly.

STEP2: Visual Inspection
A. Turn heater ON.
B. Look (downward) through window on the Combustion Chamber. Verify that igniter is glowing.
If igniter does not glow, something is wrong. Refer to the Troubleshooting Chart in Section 6 of this Service Manual to diagnose the problem.
STEP3: Reassembly of Heater
Turn the heater OFF and replace the Louver Assembly.

4-5 CLEAN FUEL CONSTANT LEVEL VALVE FILTER
Contaminants are trapped by the filter to prevent them from clogging the Fuel Constant Level Valve. The filter, itself has a great number of small pores. Whenever a filter is torn or disfigured (enlarged pores), it should immediately be replaced.

Inspect and clean the filter as indicated by the procedure below:

NOTE: Power should be OFF during the performance of this procedure.

STEP1: Disassembly
A. Using a phillips head screwdriver, unscrew the screws holding the rounded diamond-shaped cover plate at the bottom of the Fuel Constant Level Valve. Remove the cover plate.

B. Carefully remove the rubber gasket which is located behind the cover plate.

STEP2: Inspection and Cleaning
A. Pull the filter straight out of the fuel reservoir.
B. If the filter is dirty (but undamaged), rinse the filter in fresh, clean kerosene to remove all particles. Replace damaged filters.
C. To drain off upper portion of fuel constant level valve, back out phillips head screw which is located slightly above and to the left of filter cover plate. (See Fig4-1)

STEP3: Reassembly
A. Push the (new or cleaned) filter back into the bottom of the fuel reservoir.
B. Replace both the rubber gasket and the cover plate. (Take care to properly align the screw holes in the gasket and cover plate).
C. Wipe up any spilled fuel.

4-6 CLEANING FUSIBLE LINK VALVE INTAKE FITTING ON M-21
At periodic intervals, the fitting on the Fusible Link Valve should be cleaned to prevent any accumulation of foreign materials from clogging the inlet. This is accomplished as follows:

NOTE: Position a six inch U shaped piece of metal or cardboard under strainer cover to drain fuel into a pan.
MONITOR HEATING SYSTEMS
Section 4: Maintenance

WARNING
UNPLUG THE HEATER. POWER TO THE HEATER SHOULD BE OFF DURING THE PERFORMANCE OF THIS PROCEDURE.

STEP 1: Close off Fuel Supply
A. Shut off fuel at the Storage Tank or remove fuel from the fuel sump tank with siphon and syringe if using the capsule fuel tank.
B. Manually turn handle to close Fusible Link Valve.

NOTE: Place paper towels underneath the Fusible Link Valve to catch any spilled fuel.

STEP 2: Clean Valve
A. Loosen hex nut on Fusible Link Valve inlet fitting at rear of the heater. Disconnect the copper tubing which delivers the fuel from the storage or the fuel sump tank.
B. Using a small, straight piece of wire carefully and slowly ream-out the inlet fitting on the Fusible Link Valve.

Avoid scratching the inside wall of the fitting.
With a cotton swab, wipe the interior area of the inlet fitting.

STEP 3: Reconnect Fuel Line
A. Reconnect the copper tubing to the intake fitting and tighten the hex nut.
B. Turn ON fuel at Fusible Link Valve and at storage tank or fuel sump tank.
C. Check for leaks.

4-7 CORRECTIVE MAINTENANCE
The two procedures below are remedies for very generalized types of operating difficulties.

4-8 REPLACEMENT OF FUSES
A. A short circuit or similar electrical malfunction could cause the fuse to blow. Troubleshoot the cause of the blown fuse.

B. Remove the fuse from fuseholder on the Printed Circuit Board.

STEP 2: Installation of New Fuse
A. Install a new fuse into the fuseholder. The fuse must be a 250-V, 2 amper or a 250-V, 10 amper type as marked on the printed circuit board.
B. Replace the Front Cover and the Louver Assembly and plug the heater into the wall outlet.

IMPORTANT: Whenever the heater is unplugged, the Microprocessor must be reprogrammed when power is restored.

4-9 FUEL CONTAMINATION
Fuel contamination is often difficult to diagnose, even though it will adversely affect heater operation and performance. The best course of action to take when fuel contamination is suspected is to examine all of the system’s fuel filters, beginning with the fuel storage tank. If a Monitor Kerosene Lifter is part of the fueling system, examine and clean that unit’s filter, as well as the filter located in the Fuel Constant Level Valve. When it has been determined that water or some other contaminants have infiltrated the fuel, the following action must be taken:

WARNING
BEFORE PROCEEDING FURTHER, UNPLUG THE HEATER.

STEP 1: Remove Contamination
A. Shut OFF the fuel supply at the storage tank or at the Fusible Link Valve.
B. Drain off the contaminants from the fuel storage tank or the fuel sump tank (M-21). Fill with fresh, clean fuel.

STEP 2: Clean the Heater
A. Clean fuel constant level valve filter and filter compartment.
B. Remove the Louver Assembly and Solenoid Pump on the constant level valve. Clean the Solenoid Pump filter.
C. On the Monitor 21, remove the Front Cover, Top Cover, Front Bracket, Top Bracket, Combustion Chamber Cap, Baffle, Service Panel and the Flame Sensor, and then, remove the Burner Cap and Combustion Ring from the Burner Pot.
On the Monitor 40, remove the Front Cover, Top...
Cover, Front Bracket, Service Panel and the Flame Sensor, and then, remove the Burner Cap and the Combustion Ring from the Burner Pot.

D. Using clean paper towels, thoroughly wipe the bottom of the Burner Pot, the Burner Cap, the Combustion Ring, and the Flame Sensor Rod.

STEP3: Reinstall Cleaned Components
A. Replace the components correctly and install new gasket.
B. Turn on the fuel at the storage tank and at the fusible link valve, replace all covers and apply power to the heater.

If problem still exists and contaminated fuel is suspected it can be checked by
A. Shut off the fuel supply at the storage tank and at the fusible link valve.
B. Drain off fuel control valve.
C. Disconnect fuel line at back of heater and hook up a 5 gallon quick tank with proven good fuel.
D. Test run heater to see if problem clears up with use of new fuel.
5-1 INTRODUCTION
Servicing is required when the Monitor Heater is not running at proper efficiency. This section covers possible causes and corrective procedures for efficiency loses.

Signs of improper heater efficiency and performance would be:
- Yellowish lazy flame
- Smoke from flue pipe exhaust
- Heavy soot and carbon build up in combustion chamber
- Lowered heat output.

5-2 MEASUREMENT OF FUEL FLOW RATE
Fuel flow rates are preset and sealed. These rates should not and we recommend they do not be readjusted.

5-3 REMOVAL OF WATER DEPOSITS AND CONTAMINANTS FROM FUEL CONSTANT LEVEL VALVE AND FUEL LINES

NOTE: Disconnect the Monitor from power supply (unplug) before proceeding.

1. Use a syphon pump and a syringe to drain off any fuel in the fuel sump (in case of capsule tank use on the Monitor 21).
2. If using separate tank on the Monitor 21, shut off fusible link valve. On the Monitor 40 shut off valve of separate tank.
3. Bend a piece of sheet metal or cardboard into a U shape and place it under the fuel constant level valve strainer cover to drain bad fuel into a 1-2 liter pan. (Figure 4-1)
 A. Remove strainer cover and drain.
 B. With strainer cover removed, inspect, clean and/or replace strainer if damaged.
 C. Remove drain port screw and drain.
 D. Replace strainer, cover and screw.
 E. Open fusible link valve or shut-off valve to refill system with fresh crystal clear kerosene.
 F. Repeat steps 1-3 until all contaminated fuel is drained off.
4. Remove fuel feed pipe from burner pot and solenoid pump, and drain fuel into pan.
5. Once lines are clear, reconnect fuel feed pipe, turn operation switch ON and start a test run.
6. Remove burner cap.
7. Turn counter-clockwise to remove combustion ring.
8. Use wire brush to clean inside of combustion chamber.
 Vacuum and wipe clean with a waste cloth.

NOTE: Make sure all air inlet openings are clear.

5-4 CLEANING THE BURN CHAMBER
Under normal running conditions, soot will not deposit in great quantities in side the burner, and a light covering of soot will not affect the performance of the unit thus it need not be cleaned. However, if heavy soot built up does occur the unit should be opened and cleaned.

The burner is assembled using gaskets to maintain its air tightness. If these gaskets leak, the extra air can cause a serious soot problem and or exhaust gases to escape into the area being heated.

NOTE: When cleaning the burner it is recommended to replace the gaskets.

If cleaning is necessary, use the following method:
1. On the Monitor 21
 A. Remove louver assembly.
 B. Remove front cover.
 C. Remove top cover and lead wire connectors.
 D. Remove front bracket and top bracket to cover combustion chamber.
 E. Remove combustion chamber cap.
 F. Remove service panel.
 G. Remove baffle from within combustion chamber.
 H. Remove flame sensor.
2. On the Monitor 40
 A. Remove louver assembly.
 B. Remove front cover and lead wire connectors.
 C. Remove top cover.
 D. Remove front bracket to cover combustion chamber.
 E. Remove service panel.
 F. Remove Flame sensor.
 G. Remove burner cap.
4. Turn counter-clockwise to remove combustion ring.
5. Use wire brush to clean inside of combustion chamber.
 Vacuum and wipe clean with a waste cloth.

NOTE: Make sure all air inlet openings are clear.

6. If burner cloth on the bottom of burner is deformed, replace it.
7. Combustion ring may deform and deteriorate after several years use and should be cleaned and inspected before reinstallation. If combustion ring is warped, has cracked or is deteriorating it should be replaced.
8. When reassembling the unit check that combustion ring is positioned with the correct side up and is sitting squarely on all three support screws inside the combustion chamber.
9. Reinstall burner cap and flame sensor to correct position.
5-5 CLEANING THE FUEL INLET

When cleaning soot from combustion chamber the fuel inlet pipe should also be cleaned. This can be done as follows:

1. Disconnect copper fuel line at burn chamber.

2. Push a phillips head screw driver (about the same size as the I.D. of fuel inlet pipe) into the fuel inlet pipe.

3. If obstruction is felt twist screw driver back and forth (to brake up soot and carbon) so that screwdriver ultimately penetrates to approx. 1".
Monitor 21/40 Resistance values

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>APPROX. OHMS M-21</th>
<th>APPROX. OHMS M-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Igniter (connector B/B)</td>
<td>16.8</td>
<td>12.7</td>
</tr>
<tr>
<td>Power Transformer—Primary (connector H/H)</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>Power Transformer—Secondary (connector L/L)</td>
<td>824</td>
<td>824</td>
</tr>
<tr>
<td>Power Transformer—Secondary (connector M/M)</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Damper Solenoid (connector I/I)</td>
<td>4,600</td>
<td>4,600</td>
</tr>
<tr>
<td>Resistor (connector G/G)</td>
<td>68</td>
<td>91</td>
</tr>
<tr>
<td>Circulation Fan (M-40:WH & BK, M-21:RD & BK)</td>
<td>310</td>
<td>120</td>
</tr>
<tr>
<td>Circulation Fan (M-40:WH & GR, M-21:RD & YL)</td>
<td>365</td>
<td>190</td>
</tr>
<tr>
<td>Circulation Fan (M-40:BL & BK, M-21:GR & BK)</td>
<td>270</td>
<td>260</td>
</tr>
<tr>
<td>Circulation Fan (M-40:BL & GR, M-21:GR & YL)</td>
<td>210</td>
<td>200</td>
</tr>
<tr>
<td>Combustion Blower (M-40:WH & GR, M-21:BK & BK)</td>
<td>22</td>
<td>78</td>
</tr>
<tr>
<td>Combustion Blower (M-40:GR & OR)</td>
<td>—</td>
<td>92</td>
</tr>
<tr>
<td>Thermistor (connector Q/Q, at 77° F)</td>
<td>10,000</td>
<td>10,000</td>
</tr>
<tr>
<td>Fuse 2A (read with fuse out)</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Fuse 10A (read with fuse out)</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Solenoid Pump (coil)</td>
<td>688</td>
<td>695</td>
</tr>
</tbody>
</table>

WARNING:

DISCONNECT HEATER FROM POWER SOURCE BEFORE MAKING ANY RESISTANCE TESTS.
Monitor HEATING SYSTEMS
Section 6: Troubleshooting

Monitor 21/40 Component Voltage Readings

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>READING TAKEN AT</th>
<th>AC</th>
<th>DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermistor</td>
<td>Q on PCB Sensor disconnected</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Thermistor</td>
<td>Q on PCB Sensor connected</td>
<td>1.6-3.3</td>
<td></td>
</tr>
<tr>
<td>Air Pressure Switch/Overheat Protector Closed</td>
<td>Connector J</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Air Pressure Switch/Overheat Protector Open</td>
<td>Connector J</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Damper Solenoid</td>
<td>I on PCB</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Solenoid Pump</td>
<td>K on PCB</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Circulation Fan High Speed</td>
<td>GR to BK BK to RD (M-21) BL to BK BK to WH (M-40)</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>Circulation Fan Low Speed</td>
<td>YL to RD GR to YL (M-21) GR to WH BL to GR (M-40)</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>Igniter</td>
<td>B on PCB</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Power Transformer (primary side)</td>
<td>H on PCB</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Power Transformer (secondary side)</td>
<td>Connector L</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Connector M</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Combustion Blower High Speed</td>
<td>F on PCB</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Combustion Blower Low Speed</td>
<td>F on PCB (RL3 is OFF)</td>
<td>92(M-21)</td>
<td>88(M-40)</td>
</tr>
<tr>
<td>Resistor</td>
<td>G on PCB</td>
<td>18(M-21)</td>
<td>22(M-40)</td>
</tr>
</tbody>
</table>
Section 6: Troubleshooting

Test Point Voltage

<table>
<thead>
<tr>
<th>TP 8</th>
<th>TP 7</th>
<th>TP 6</th>
<th>TP 5</th>
<th>TP 4</th>
<th>TP 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>12V ±30%</td>
<td>12V ±30%</td>
<td>12V ±30%</td>
<td>12V ±30%</td>
<td>12V ±30%</td>
<td>12V ±30%</td>
</tr>
<tr>
<td>Post-Purge</td>
<td>Pre-Heat</td>
<td>Pre-Burn</td>
<td>Pre-Burn 1</td>
<td>High</td>
<td>Medium-High</td>
</tr>
<tr>
<td>Low</td>
<td>Medium-Low</td>
<td>High</td>
<td>Medium-High</td>
<td>Low</td>
<td>Medium-High</td>
</tr>
<tr>
<td>Operation</td>
<td>Operation</td>
<td>Operation</td>
<td>Operation</td>
<td>Operation</td>
<td>Operation</td>
</tr>
</tbody>
</table>

Troubleshooting

- Check all connections and wiring.
- Ensure the heating system is properly calibrated.
- Verify the input power is within the specified range.
- Check for loose or damaged sensors.
- Inspect the heating element for any signs of damage or wear.

Notes:
- Monitor the heating system's performance regularly.
- Keep a log of any changes in temperature or output.
- Contact a professional if issues persist.

MONITOR HEATING SYSTEMS
| SYMPTOM | CHECK1 | RESULT | CHECK2 | RESULT | CHECK3 | RESULT | CHECK4 | RESULT |
|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| No fuel feed, no ignition | Check for fuel in fuel tank | No | Check for fuel in fuel tank | Yes | Check for fuel in fuel tank | No | Check for fuel in fuel tank | Yes |
| Extinguished soon after ignition | Fusible link valve closed on M-21 | Yes | Check for fuel in fuel tank | No | Check for fuel in fuel tank | Yes |
| Is Fuel constant level valve lever set? | Fusible link valve closed on M-21 | No | Check for fuel in fuel tank | Yes | Check for fuel in fuel tank | Yes |
| | Fusible link valve closed on M-21 | Yes | Check for fuel in fuel tank | Yes | Check for fuel in fuel tank | Yes |
| Reason | Corrective Measure | Replaced handle of fusible link valve or open valve | Failure of Fuel constant level valve | Remove fuel constant level valve | Clean burner joint | Fuel not fed because of surface tension of water | Discharge water |
| Failure of Fuel constant level valve | Failure of Fuel constant level valve | Clean burner joint | Fuel not fed because of surface tension of water | Discharge water | Water gathering in fuel tank | Water gathering in fuel tank | Replace fuel constant level valve |
| Fuel Line passageway into the Combustion Chamber near base of Burner Pot | Fuel Line passageway into the Combustion Chamber near base of Burner Pot | Clean burner joint | Fuel not fed because of surface tension of water | Discharge water | Water gathering in fuel tank | Water gathering in fuel tank | Replace fuel constant level valve |
| Failure of Solenoid Pump | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Fuel shortage | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Overheat condition | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Fuel not entering into fuel | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Fuel shortage | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Overheat condition | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Fuel shortage | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Overheat condition | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Fuel shortage | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Overheat condition | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Fuel shortage | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Overheat condition | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Fuel shortage | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Overheat condition | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Fuel shortage | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Overheat condition | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Fuel shortage | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Overheat condition | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Fuel shortage | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Overheat condition | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Fuel shortage | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Overheat condition | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Fuel shortage | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Overheat condition | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Fuel shortage | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Overheat condition | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Fuel shortage | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Overheat condition | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Fuel shortage | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Overheat condition | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Fuel shortage | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Overheat condition | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Fuel shortage | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Overheat condition | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Fuel shortage | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
| Overheat condition | Solenoid Pump | Correct or replace wiring | Wiring failure | Correct or replace wiring | Wiring failure | Wiring failure | Correct or replace wiring |
9. The Overheat Thermostat is activated.

- Is window curtain too close to the rear of unit? [Yes, No]

 - Is Circulation Fan Guard dusty? [Yes, No]
 - Yes: Does circulation fan operate properly? [Yes, No]
 - Yes: Curtain or other obstruction covers circulation air inlet. (Clean guard. Keep curtain from unit.)
 - No: Failure of P.C.B (Replace or check P.C.B)
 - No: Obstacle covers circulating air outlet. (Remove obstacle.)

 - No: Circulation fan failed. (Replace Fan Motor.)
 - Incorrect wiring. (Repair or replace wiring.)
NOTE: If problem is found to be in PCB, do not attempt to repair, replace and send PCB thru your distributor to MPI for repair.
| SYMPTOM | CHECK1 | RESULT | CHECK2 | RESULT | CHECK3 | RESULT | CHECK4 | RESULT | CHECK5 | RESULT | REASON | CORRECTIVE MEASURE |
|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------------|
| Is there 12Vdc at coil of relay (REL) during igniting? | Yes | Does solenoid pump work during igniting? | Yes | Failure of relay (REL) | Replace relay. |
| | No | | Failure of diode (D2) | Replace diode. |
| | | | Failure of solenoid pump. | Replace solenoid pump. |
| | Yes | Failure of fuel supply parts. | Check fuel supply parts. |
| | No | Failure of transistor (Q1) | Replace transistor. |
| | | Failure of microprocessor (IC1) | Replace microprocessor. |
| | | Failure of IC (IC1, IC2) | Replace IC. |
| | | Failure of diode (D1) | Replace diode. |
| | | | Failure of IC (IC1, IC2) | Replace IC. |
| | | | Failure of resistor (R48) | Replace resistor. |
| | | | Failure of transistor (Q2) | Replace transistor. |
| | | | Failure of diode (D1) | Replace diode. |
CHECKS

Stop heater operation, and connect equivalent flame circuit between flame sensor rod (O pin) and ground (N pin). Equivalent flame circuit:

```
O --------> N
```

Result 3

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>CHECK1</th>
<th>RESULT</th>
<th>CHECK2</th>
<th>RESULT</th>
<th>CHECK3</th>
<th>RESULT</th>
<th>CHECK4</th>
<th>RESULT</th>
<th>CHECK5</th>
<th>RESULT</th>
<th>CORRECTIVE MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flame failure</td>
<td>Is there 1 VDC at IC2 (O pin)?</td>
<td>No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes.</td>
<td></td>
<td>Is there more than 1 VDC at IC2 (O pin)?</td>
<td>No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes.</td>
<td></td>
<td></td>
<td>Yes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No.</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

RESULTS

<table>
<thead>
<tr>
<th>REASON</th>
<th>CORRECTIVE MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure of resistor (R4, R5, R6, R20)</td>
<td>Replace resistor.</td>
</tr>
<tr>
<td>Failure of transformer</td>
<td>Replace transformer.</td>
</tr>
<tr>
<td>Fuse (F3) open</td>
<td>Replace fuse.</td>
</tr>
<tr>
<td>Failure of capacitor (C14, C15)</td>
<td>Replace capacitor.</td>
</tr>
<tr>
<td>Failure of resistor (R1, R9, R10, R20, R56, R57)</td>
<td>Replace resistor.</td>
</tr>
<tr>
<td>Failure of comparator (IC2)</td>
<td>Replace comparator.</td>
</tr>
<tr>
<td>Failure of resistor (R20)</td>
<td>Replace resistor.</td>
</tr>
<tr>
<td>Failure of diode (D16)</td>
<td>Replace diode.</td>
</tr>
<tr>
<td>Failure of capacitor (C27)</td>
<td>Replace capacitor.</td>
</tr>
<tr>
<td>Failure of IC3</td>
<td>Replace IC.</td>
</tr>
<tr>
<td>Failure of microprocessor</td>
<td>Replace microprocessor.</td>
</tr>
<tr>
<td>Failure of wiring for flame sensor and ground</td>
<td>Correct wiring.</td>
</tr>
<tr>
<td>Incorrect installation of flame sensor rod</td>
<td>Correct installation.</td>
</tr>
</tbody>
</table>
Connect 10KΩ resistor at Q1 pins, and then, set temperature from Low to High.

1. Is temperature display normal?
 - Yes: Is solenoid pump able to change fuel flow rate?
 - Yes: Is circulation fan motor able to change speed?
 - Yes: Failure of resistor (R47,8Ω,5.6Ω,6Ω).
 - Replace resistor.
 - No: Failure of solenoid pump.
 - Replace solenoid pump.
 - No: Failure of IC (IC5,6).
 - Replace IC.
 - No: Failure of IC6.
 - Replace IC.
 - Failure of circulation fan motor.
 - Replace circulation fan motor.
 - Failure of relay (RL1,2).
 - Replace relay.
 - Failure of IC6.
 - Replace IC6.
 - Failure of combustion blower.
 - Replace combustion blower.
 - Failure of damper solenoid.
 - Replace damper solenoid.
 - Failure of resistor (R1,2Ω,0.5Ω,2Ω,3Ω).
 - Replace resistor.
 - Failure of capacitor (C5,C6,8Ω,20Ω).
 - Replace capacitor.
 - Failure of microprocessor.
 - Replace microprocessor.
 - No: Is there 3.3V at TP3?
 - Yes: R2, zener diode (ZD2), IC9.
 - Replace zener diode.
 - No: Failure of capacitor (C10,C38).
 - Replace capacitor.
 - Failure of capacitor (C11,C12).
 - Replace capacitor.
 - Failure of circulation (IC1,2).
 - Replace circulation (IC1,2).
 - Failure of RL1,2,3.
 - Replace relay.
 - Failure of RL1,2,3.
 - Replace relay.
CONNECTION OF LEAD WIRES

Panel Printed Wiring Board

Lamp Printed Wiring Board

Main Printed Wiring Board

figure 7-1 Monitor 40
CONNECTION OF LEAD WIRES

Panel Printed Wiring Board

Lamp Printed Wiring Board

Main Printed Wiring Board

figure 7-2 Monitor 21
<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
<th>ITEM NO.</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>6300</td>
<td>SPILL TRAY</td>
<td>52</td>
<td>4833</td>
<td>CORD BUSHING</td>
</tr>
<tr>
<td>6185</td>
<td>LEG</td>
<td>53</td>
<td>6037</td>
<td>LEVEL GUIDE</td>
</tr>
<tr>
<td>6301</td>
<td>AIR SUPPLY HOSE (A)</td>
<td>54</td>
<td>6138</td>
<td>CARRYING HANDLE</td>
</tr>
<tr>
<td>6302</td>
<td>AIR SUPPLY HOSE (B)</td>
<td>55</td>
<td>6186</td>
<td>SENSOR ASSY</td>
</tr>
<tr>
<td>6303</td>
<td>CONSTANT LEVEL VALVE</td>
<td>56</td>
<td>4004</td>
<td>JOINT PIPE</td>
</tr>
<tr>
<td>6304</td>
<td>CONSTANT LEVEL VALVE STRAINER</td>
<td>57</td>
<td>6328</td>
<td>AIR DAMPER (E)</td>
</tr>
<tr>
<td>6305</td>
<td>FUEL PIPE</td>
<td>58</td>
<td>6329</td>
<td>AIR DAMPER (G)</td>
</tr>
<tr>
<td>6306</td>
<td>SOLENOID PUMP</td>
<td>59</td>
<td>6145</td>
<td>AIR SUPPLY HOSE ASSY</td>
</tr>
<tr>
<td>6307</td>
<td>GASKET (1)</td>
<td>60</td>
<td>4014</td>
<td>EXHAUST OUTLET CAP</td>
</tr>
<tr>
<td>6308</td>
<td>GASKET (2)</td>
<td>61</td>
<td>4016</td>
<td>AIR PORT O RING</td>
</tr>
<tr>
<td>6309</td>
<td>GASKET (3)</td>
<td>62</td>
<td>4006</td>
<td>PIPE HOLDER</td>
</tr>
<tr>
<td>6310</td>
<td>HEATER</td>
<td>63</td>
<td>4008</td>
<td>HOSE BAND</td>
</tr>
<tr>
<td>6311</td>
<td>HEATER (B)</td>
<td>64</td>
<td>4805</td>
<td>AIR OUTLET CAP</td>
</tr>
<tr>
<td>6312</td>
<td>HEATER COVER PACKING</td>
<td>65</td>
<td>6147</td>
<td>FLUE PIPE ASSY</td>
</tr>
<tr>
<td>6313</td>
<td>GASKET (4)</td>
<td>66</td>
<td>6148</td>
<td>SLEEVE FLANGE SET</td>
</tr>
<tr>
<td>6314</td>
<td>GASKET (5)</td>
<td>67</td>
<td>6075</td>
<td>FAN</td>
</tr>
<tr>
<td>6315</td>
<td>OIL SUMP PIPE</td>
<td>68</td>
<td>6330</td>
<td>CIRCULATION MOTOR</td>
</tr>
<tr>
<td>6316</td>
<td>JOINT SEAL PACKING</td>
<td>69</td>
<td>6331</td>
<td>BLOWER GUARD</td>
</tr>
<tr>
<td>6317</td>
<td>WIRE GUARD</td>
<td>70</td>
<td>6332</td>
<td>UNDER COVER</td>
</tr>
<tr>
<td>6318</td>
<td>CHAMBER GASKET</td>
<td>71</td>
<td>6333</td>
<td>LOUVER</td>
</tr>
<tr>
<td>6319</td>
<td>COMBUSTION RING ASSY</td>
<td>72</td>
<td>6334</td>
<td>CONTROL COVER</td>
</tr>
<tr>
<td>6320</td>
<td>BURNER CAP</td>
<td>73</td>
<td>6335</td>
<td>FRONT COVER</td>
</tr>
<tr>
<td>6321</td>
<td>CHAMBER CAP</td>
<td>74</td>
<td>6336</td>
<td>LAMP PANEL</td>
</tr>
<tr>
<td>6322</td>
<td>CONDENSER (2.5 MFD)</td>
<td>75</td>
<td>6337</td>
<td>SWITCH ASSY</td>
</tr>
<tr>
<td>6323</td>
<td>BLOWER ASSY</td>
<td>76</td>
<td>6338</td>
<td>LAMP ASSY</td>
</tr>
<tr>
<td>6324</td>
<td>DAMPER SOLENOID ASSY</td>
<td>77</td>
<td>6339</td>
<td>TOP COVER</td>
</tr>
<tr>
<td>6325</td>
<td>SUCTION CASE ASSY</td>
<td>78</td>
<td>6340</td>
<td>RESISTOR</td>
</tr>
<tr>
<td>6326</td>
<td>SEAL PACKING</td>
<td>79</td>
<td>6341</td>
<td>CAVITY ASSY</td>
</tr>
<tr>
<td>6327</td>
<td>CABINETS ASSY</td>
<td>80</td>
<td>6167</td>
<td>MICROPROCESSOR (M50940)</td>
</tr>
<tr>
<td>6328</td>
<td>PWB ASSY</td>
<td>81</td>
<td>6168</td>
<td>RELAY (A)</td>
</tr>
<tr>
<td>6329</td>
<td>PWB SPACER CLIP (A)</td>
<td>82</td>
<td>6169</td>
<td>RELAY (B)</td>
</tr>
<tr>
<td>6330</td>
<td>PWB SPACER CLIP (B)</td>
<td>83</td>
<td>6171</td>
<td>BUZZER</td>
</tr>
<tr>
<td>6331</td>
<td>POWER TRANSFORMER</td>
<td>84</td>
<td>6172</td>
<td>FUSE (250V 10A)</td>
</tr>
<tr>
<td>6332</td>
<td>AIR LINE</td>
<td>85</td>
<td>6173</td>
<td>FUSE (250V 2A)</td>
</tr>
<tr>
<td>6333</td>
<td>POWER TRANSFORMER</td>
<td>86</td>
<td>6340</td>
<td>CAPACITOR (1.9MFD)</td>
</tr>
<tr>
<td>6334</td>
<td>CABINET ASSY</td>
<td>87</td>
<td>6341</td>
<td>CARTON BOX</td>
</tr>
<tr>
<td>6335</td>
<td>CABINET ASSY</td>
<td>88</td>
<td>6342</td>
<td>CUSHION SET</td>
</tr>
<tr>
<td>6336</td>
<td>OWNERS GUIDE</td>
<td>89</td>
<td>6143</td>
<td>OWNERS GUIDE</td>
</tr>
<tr>
<td>6337</td>
<td>WALL CLAMPS</td>
<td>90</td>
<td>6187</td>
<td>TC3 M54563P</td>
</tr>
<tr>
<td>6338</td>
<td>BASE TRAY RETAINER</td>
<td>91</td>
<td>6188</td>
<td>TC9-10-11 PHOTO COUPLER</td>
</tr>
<tr>
<td>6339</td>
<td>WALL CLAMPS</td>
<td>92</td>
<td>6190</td>
<td>BASE TRAY RETAINER</td>
</tr>
<tr>
<td>6340</td>
<td>WALL CLAMPS</td>
<td>93</td>
<td>6194</td>
<td>WALL CLAMPS</td>
</tr>
<tr>
<td>6341</td>
<td>WALL CLAMPS</td>
<td>94</td>
<td>6195</td>
<td>IGNITER BRACKET</td>
</tr>
<tr>
<td>6342</td>
<td>WALL CLAMPS</td>
<td>95</td>
<td>6196</td>
<td>FLAME ROD BRACKET</td>
</tr>
<tr>
<td>6343</td>
<td>WALL CLAMPS</td>
<td>96</td>
<td>6197</td>
<td>SCREW SET FOR FLUE PIPE</td>
</tr>
<tr>
<td>6344</td>
<td>WALL CLAMPS</td>
<td>97</td>
<td>6344</td>
<td>STRAINER GASKET</td>
</tr>
<tr>
<td>6345</td>
<td>WALL CLAMPS</td>
<td>98</td>
<td>6345</td>
<td>UNION NUT</td>
</tr>
<tr>
<td>6346</td>
<td>WALL CLAMPS</td>
<td>99</td>
<td>6346</td>
<td>IGNITOR COVER</td>
</tr>
<tr>
<td>6347</td>
<td>WALL CLAMPS</td>
<td>100</td>
<td>6347</td>
<td>WIRING GUARD</td>
</tr>
<tr>
<td>6348</td>
<td>WALL CLAMPS</td>
<td>101</td>
<td>6348</td>
<td>MOTOR FOR COMBUSTION BLOWER</td>
</tr>
<tr>
<td>6139</td>
<td>POWER SUPPLY CORD</td>
<td>102</td>
<td>8216</td>
<td>TOUCH-UP PAINT (WHITE)</td>
</tr>
</tbody>
</table>
MONITOR 21 SERVICE PARTS LIST

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
<th>ITEM NO.</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6100</td>
<td>SPILL TRAY</td>
<td>50</td>
<td>6149</td>
<td>UNDER COVER</td>
</tr>
<tr>
<td>2</td>
<td>6101</td>
<td>AIR SUPPLY HOSE A</td>
<td>51</td>
<td>6150</td>
<td>LOUVER</td>
</tr>
<tr>
<td>3</td>
<td>6102</td>
<td>AIR SUPPLY HOSE B</td>
<td>52</td>
<td>6151</td>
<td>OVER HEAT PROTECTOR</td>
</tr>
<tr>
<td>4</td>
<td>6103</td>
<td>FUEL PIPE</td>
<td>53</td>
<td>6152</td>
<td>FAN THERMOSTAT</td>
</tr>
<tr>
<td>5</td>
<td>6104</td>
<td>FUSIBLE VALVE</td>
<td>54</td>
<td>6153</td>
<td>FRONT COVER</td>
</tr>
<tr>
<td>6</td>
<td>6105</td>
<td>CONSTANT LEVEL VALVE</td>
<td>55</td>
<td>6154</td>
<td>SWITCH ASSY</td>
</tr>
<tr>
<td>7</td>
<td>6106</td>
<td>CONSTANT LEVEL VALVE STRAINER</td>
<td>56</td>
<td>6155</td>
<td>LAMP ASSY</td>
</tr>
<tr>
<td>8</td>
<td>6107</td>
<td>AIR LINE</td>
<td>57</td>
<td>6156</td>
<td>TOP COVER</td>
</tr>
<tr>
<td>9</td>
<td>6108</td>
<td>SOLENOID PUMP PACKING</td>
<td>58</td>
<td>6157</td>
<td>LAMP PANEL</td>
</tr>
<tr>
<td>10</td>
<td>6109</td>
<td>SOLENOID PUMP</td>
<td>59</td>
<td>6158</td>
<td>FUEL TANK COVER</td>
</tr>
<tr>
<td>11</td>
<td>6110</td>
<td>OIL SUMP PIPE</td>
<td>60</td>
<td>6159</td>
<td>FUEL TANK ASSY</td>
</tr>
<tr>
<td>12</td>
<td>6111</td>
<td>FUEL SUMP</td>
<td>61</td>
<td>6160</td>
<td>BLOWER GUARD</td>
</tr>
<tr>
<td>13</td>
<td>6112</td>
<td>GASKET (1)</td>
<td>62</td>
<td>6161</td>
<td>CIRCULATION MOTOR</td>
</tr>
<tr>
<td>14</td>
<td>6113</td>
<td>BURNER CLOTH</td>
<td>63</td>
<td>6162</td>
<td>RESISTOR</td>
</tr>
<tr>
<td>15</td>
<td>6114</td>
<td>GASKET (2)</td>
<td>64</td>
<td>6163</td>
<td>AIR PACKING SET</td>
</tr>
<tr>
<td>16</td>
<td>6115</td>
<td>GASKET (3)</td>
<td>65</td>
<td>6164</td>
<td>JOINT SEAL PACKING</td>
</tr>
<tr>
<td>17</td>
<td>6116</td>
<td>HEATER</td>
<td>66</td>
<td>6165</td>
<td>FLOAT SWITCH</td>
</tr>
<tr>
<td>18</td>
<td>6117</td>
<td>HEATER COVER PACKING</td>
<td>67</td>
<td>6166</td>
<td>CABINET ASSY</td>
</tr>
<tr>
<td>19</td>
<td>6118</td>
<td>FLAME DETECTIVE PLUG</td>
<td>68</td>
<td>6167</td>
<td>MICROPROCESSOR (M50940)</td>
</tr>
<tr>
<td>20</td>
<td>6119</td>
<td>PLUG PACKING</td>
<td>69</td>
<td>6168</td>
<td>RELAY (A)</td>
</tr>
<tr>
<td>21</td>
<td>6120</td>
<td>GASKET (4)</td>
<td>70</td>
<td>6169</td>
<td>RELAY (B)</td>
</tr>
<tr>
<td>22</td>
<td>6121</td>
<td>HEAT EXCHANGER ASSY</td>
<td>71</td>
<td>6170</td>
<td>CAPACITOR (1.5MFD)</td>
</tr>
<tr>
<td>23</td>
<td>6122</td>
<td>GASKET (6)</td>
<td>72</td>
<td>6171</td>
<td>BUZZER</td>
</tr>
<tr>
<td>24</td>
<td>6123</td>
<td>EXHAUST DUCT</td>
<td>73</td>
<td>6172</td>
<td>FUSE (250V 10A)</td>
</tr>
<tr>
<td>25</td>
<td>6124</td>
<td>WINDOW GASKET</td>
<td>74</td>
<td>6173</td>
<td>FUSE (250V 10V)</td>
</tr>
<tr>
<td>26</td>
<td>6125</td>
<td>WINDOW FRAME GASKET</td>
<td>75</td>
<td>6174</td>
<td>CARTON BOX</td>
</tr>
<tr>
<td>27</td>
<td>6126</td>
<td>WINDOW BASE GASKET</td>
<td>76</td>
<td>6175</td>
<td>CUSHION SET</td>
</tr>
<tr>
<td>28</td>
<td>6127</td>
<td>COMBUSTION CHAMBER ASSY</td>
<td>77</td>
<td>6176</td>
<td>OWNERS GUIDE</td>
</tr>
<tr>
<td>29</td>
<td>6128</td>
<td>BURNER CAP</td>
<td>78</td>
<td>6177</td>
<td>O-RING (P39)</td>
</tr>
<tr>
<td>30</td>
<td>6129</td>
<td>BAFFLE ASSY</td>
<td>79</td>
<td>6177</td>
<td>OIL FILTER</td>
</tr>
<tr>
<td>31</td>
<td>6130</td>
<td>CHAMBER GASKET</td>
<td>80</td>
<td>6178</td>
<td>FLOAT SWITCH PACKING</td>
</tr>
<tr>
<td>32</td>
<td>6131</td>
<td>CHAMBER CAP</td>
<td>81</td>
<td>6179</td>
<td>FUEL TANK CAP</td>
</tr>
<tr>
<td>33</td>
<td>6132</td>
<td>POWER TRANSFORMER</td>
<td>82</td>
<td>6180</td>
<td>FAN BLADE</td>
</tr>
<tr>
<td>34</td>
<td>6133</td>
<td>PWB ASSY</td>
<td>83</td>
<td>6181</td>
<td>COMBUSTION RING ASSY</td>
</tr>
<tr>
<td>35</td>
<td>6134</td>
<td>PWB SPACER CLIP (A)</td>
<td>84</td>
<td>6182</td>
<td>BURNER</td>
</tr>
<tr>
<td>36</td>
<td>6135</td>
<td>PWB SPACER CLIP (B)</td>
<td>85</td>
<td>6183</td>
<td>JUNCTION BOX COVER</td>
</tr>
<tr>
<td>37</td>
<td>6136</td>
<td>PUFFER BUSH</td>
<td>86</td>
<td>6184</td>
<td>AIR PRESSURE SW</td>
</tr>
<tr>
<td>38</td>
<td>6137</td>
<td>CORD CONNECTOR</td>
<td>87</td>
<td>6185</td>
<td>LEG</td>
</tr>
<tr>
<td>39</td>
<td>6138</td>
<td>CARRYING HANDLE</td>
<td>88</td>
<td>6186</td>
<td>SENSOR ASSY</td>
</tr>
<tr>
<td>40</td>
<td>6139</td>
<td>POWER SUPPLY CORD</td>
<td>89</td>
<td>6037</td>
<td>LEVEL GUIDE</td>
</tr>
<tr>
<td>41</td>
<td>6140</td>
<td>BLOWER ASSY</td>
<td>90</td>
<td>6068</td>
<td>WINDOW PLATE</td>
</tr>
<tr>
<td>42</td>
<td>6141</td>
<td>BLOWER MOUTH PACKING</td>
<td>91</td>
<td>6069</td>
<td>WINDOW GLASS</td>
</tr>
<tr>
<td>43</td>
<td>6142</td>
<td>DAMPER SOLENOID ASSY</td>
<td>92</td>
<td>4004</td>
<td>JOINT PIPE</td>
</tr>
<tr>
<td>44</td>
<td>6143</td>
<td>SUCTION CASE</td>
<td>93</td>
<td>4805</td>
<td>AIR OUTLET CAP</td>
</tr>
<tr>
<td>45</td>
<td>6144</td>
<td>SEAL PACKING</td>
<td>94</td>
<td>4006</td>
<td>PIPE HOLDER</td>
</tr>
<tr>
<td>46</td>
<td>6145</td>
<td>AIR SUPPLY HOSE ASSY</td>
<td>95</td>
<td>4008</td>
<td>HOSE BAND</td>
</tr>
<tr>
<td>47</td>
<td>6146</td>
<td>AIR DAMPER</td>
<td>96</td>
<td>4014</td>
<td>EXHAUST OUTLET CAP</td>
</tr>
<tr>
<td>48</td>
<td>6147</td>
<td>FLUE PIPE ASSY</td>
<td>97</td>
<td>4016</td>
<td>AIR PORT O RING</td>
</tr>
<tr>
<td>49</td>
<td>6148</td>
<td>SLEEVE FLANGE SET</td>
<td>98</td>
<td>4833</td>
<td>CORD BUSHING</td>
</tr>
</tbody>
</table>